261 research outputs found

    Hybrid fuzzy particle swarm optimization approach for reactive power optimization

    Get PDF
    This paper presents a new approach to the optimal reactive power planning based on fuzzy logic and particle swarm optimization (PSO). The objectives are to minimize real power loss and to improve the voltage profile of a given interconnected power system. Transmission loss is expressed in terms of voltage increments by relating the control variables i.e. reactive var generations by the generators, tap positions of transformers and reactive power injections by the shunt capacitors. The objective function and the constraints are modeled by fuzzy sets. A term ‘sensitivity’ at each bus is defined which depends on variation of real power loss with respect to the voltage at that bus. Based on the Fuzzy membership values of the sensitivity, corrective action at a particular bus is taken i.e. shunt capacitors are installed at the candidate buses based on real power loss and sets of solution. Then, PSO is applied to get final solution. PSO is used for optimal setting of transformer tap positions and reactive generations of generators. The solutions obtained by this method is compared with the solutions obtained by other evolutionary algorithms like genetic algorithm (GA), differential evolution (DE) and particle swarm optimization (PSO)

    Control and analysis of crucial parameters for an automatic boiler unit in a chemical industry

    Get PDF
    A boiler plays a significant role in a processing industry, particularly in chemical industry. It requires proper adoption of control techniques for supplying accurate temperature, pressure, steam, and water flow to produce chemicals. An uncontrolled boiler can shut down the whole process. Therefore it requires a continuous monitoring system for avoiding such shutdown. In the past few decades, relay logic, embedded or process card systems were used for controlling the boiler system. In the conventional system, the controlling scheme was also complex for troubleshooting because process cards are used only once. In order to overcome this type of problem Supervisory Control and Data Acquisition (SCADA) and Programmable Logic Controller (PLC) system helps to collect data and information about the flow of boiler from various sensors. In this paper, SCADA and PLC assist in controlling crucial parameters using Proportional Integral Derivative (PID) control. PID controller used in this paper is programmed according to the boiler operation's need, and the data can be stored and analyzed using the SCADA system. The results in this paper help the industrial personnel for boiler automation, allowing the plant operator to observe the crucial parameters for increasing boiler efficiency and reducing the financial losses.&nbsp

    A Study on Training Need of Wheat Growers Regarding Improved Production Technology in Jabalpur District of Madhya Pradesh

    Get PDF
    The study area most of the farmers are growing Wheat at the farm level due to its genetically advance which caused low cost of cultivation due to low use of chemical and realizing high yield and less losses by insect pest damage. For production of Wheat the agricultural practices required needs special package of practices to boost-up the productivity with low cost of production. Results reported that training need in adoption of improved wheat production technology. Highly training need in case of Improved variety (mean score 2.56) followed by Marketing (mean score 2.35), Plant protection (mean score 2.30), Application of herbicides uses   (mean score 2.25), Insect –pest management (mean score 2.14), Storage (mean score 2.13), Use of affected equipment and machinery (mean score 2.12), Application of manure and fertilizers (mean score 2.11), Time of harvesting (mean score 1.96), Method of seed sowing (mean score 1.96) and Field preparation (mean score 1.80).Data reported overall training need in adoption of improved wheat production technology. Table show that majority of the respondents (45.00 percent) were need often training followed by 32.50 percent respondents were need always training and 22.50 percent respondents were need rarely training. View Article DOI: 10.47856/ijaast.2022.v09i04.00

    Genetic variability of kernel provitamin-A in sub-tropically adapted maize hybrids possessing rare allele of β-carotene hydroxylase

    Get PDF
    Vitamin-A deficiency is a major health concern. Traditional yellow maize possesses low provitamin-A (proA). Mutant crtRB1 gene significantly enhances proA. 24 experimental hybrids possessing crtRB1 allele were evaluated for β-carotene (BC), β-cryptoxanthin (BCX), lutein (LUT), zeaxanthin (ZEA), total carotenoids (TC) and grain yield at multi-locations. BC (0.64–17.24 µg/g), BCX (0.45–6.84 µg/g), proA (0.86–20.46 µg/g), LUT (9.60–31.03 µg/g), ZEA (1.24–12.73 µg/g) and TC (20.60–64.02 µg/g) showed wide variation. No significant genotype × location interaction was observed for carotenoids. The mean BC (8.61 µg/g), BCX (4.04 µg/g) and proA (10.63 µg/g) in crtRB1-based hybrids was significantly higher than normal hybrids lacking crtRB1-favourable allele (BC: 1.73 µg/g, BCX: 1.29 µg/g and proA: 2.37 µg/g). Selected crtRB1-based hybrids possessed 33% BC and 40% BCX compared to 6% BC and 5% BCX in normal hybrids. BC showed positive correlation with BCX (r = 0.90), proA (r = 0.99) and TC (r = 0.64) among crtRB1-based hybrids. Carotenoids didn't show association with grain yield. Average yield potential of proA rich hybrids (6794 kg/ha) was at par with normal hybrids (6961 kg/ha). PROAH-13, PROAH-21, PROAH-17, PROAH-11, PROAH-23, PROAH-24 and PROAH-3 were the most promising with >12 µg/g proA and >6000 kg/ha grain yield. The newly identified crtRB1-based hybrids assume significance in alleviating malnutrition

    Enhanced orbital electron-capture nuclear decay rate in compact medium

    Get PDF
    The eigenstate energies of an atom increase under spatial confinement and this effect should also increase the electron density of the orbital electrons at the nucleus thus increasing the decay rate of an electron-capturing radioactive nucleus. We have observed that the orbital electron capture rates of 109In and 110Sn increased by (1.00+-0.17)% and (0.48+-0.25)% respectively when implanted in the small Au lattice versus large Pb lattice. These results have been understood because of the higher compression experienced by the large radioactive atoms due to the spatial confinement in the smaller Au lattice.Comment: 30 pages, 3 Figures, 2 Table

    A batch-service queueing model with a discrete batch Markovian arrival process

    Get PDF
    Queueing systems with batch service have been investigated extensively during the past decades. However, nearly all the studied models share the common feature that an uncorrelated arrival process is considered, which is unrealistic in several real-life situations. In this paper, we study a discrete-time queueing model, with a server that only initiates service when the amount of customers in system (system content) reaches or exceeds a threshold. Correlation is taken into account by assuming a discrete batch Markovian arrival process (D-BMAP), i.e. the distribution of the number of customer arrivals per slot depends on a background state which is determined by a first-order Markov chain. We deduce the probability generating function of the system content at random slot marks and we examine the influence of correlation in the arrival process on the behavior of the system. We show that correlation merely has a small impact on the threshold that minimizes the mean system content. In addition, we demonstrate that correlation might have a significant influence on the system content and therefore has to be included in the model

    An Analytical Study on the Multi-critical Behaviour and Related Bifurcation Phenomena for Relativistic Black Hole Accretion

    Full text link
    We apply the theory of algebraic polynomials to analytically study the transonic properties of general relativistic hydrodynamic axisymmetric accretion onto non-rotating astrophysical black holes. For such accretion phenomena, the conserved specific energy of the flow, which turns out to be one of the two first integrals of motion in the system studied, can be expressed as a 8th^{th} degree polynomial of the critical point of the flow configuration. We then construct the corresponding Sturm's chain algorithm to calculate the number of real roots lying within the astrophysically relevant domain of R\mathbb{R}. This allows, for the first time in literature, to {\it analytically} find out the maximum number of physically acceptable solution an accretion flow with certain geometric configuration, space-time metric, and equation of state can have, and thus to investigate its multi-critical properties {\it completely analytically}, for accretion flow in which the location of the critical points can not be computed without taking recourse to the numerical scheme. This work can further be generalized to analytically calculate the maximal number of equilibrium points certain autonomous dynamical system can have in general. We also demonstrate how the transition from a mono-critical to multi-critical (or vice versa) flow configuration can be realized through the saddle-centre bifurcation phenomena using certain techniques of the catastrophe theory.Comment: 19 pages, 2 eps figures, to appear in "General Relativity and Gravitation

    Electroosmotic flow of biorheological micropolar fluids through microfluidic channels

    Get PDF
    An analysis is presented in this work to assess the influence of micropolar nature of fluids in fully developed flow induced by electrokinetically driven peristaltic pumping through a parallel plate microchannel. The walls of the channel are assumed as sinusoidal wavy to analyze the peristaltic flow nature. We consider that the wavelength of the wall motion is much larger as compared to the channel width to validate the lubrication theory. To simplify the Poisson Boltzmann equation, we also use the Debye-Hückel linearization (i.e. wall zeta potential ≤ 25mV). We consider governing equation for micropolar fluid in absence of body force and couple effects however external electric field is employed. The solutions for axial velocity, spin velocity, flow rate, pressure rise and stream functions subjected to given physical boundary conditions are computed. The effects of pertinent parameters like Debye length and Helmholtz-Smoluchowski velocity which characterize the EDL phenomenon and external electric field, coupling number and micropolar parameter which characterize the micropolar fluid behavior, on peristaltic pumping are discussed through the illustrations. The results show that peristaltic pumping may alter by applying external electric fields. This model can be used to design and engineer the peristalsis-lab-on-chip and micro peristaltic syringe pumps for biomedical applications
    • …
    corecore