237 research outputs found

    Influence of drying process and particle size of persimmon fibre on its physicochemical, antioxidant, hydration and emulsifying properties

    Full text link
    [EN] Persimmon, given its current surplus production, could be an alternative source for the extraction of certain interesting ingredients for the food industry and human health, such as fibre. Thus, the aim of this study was to analyse the influence of hot air and freeze-drying, as well as the particle size of fibre extracted from persimmon peels or pulp on their physicochemical, antioxidant, hydration and emulsifying properties, compared to commercial fibres (from peach, lemon, orange and apple). The results showed that both freeze-dried persimmon pulp and freeze-dried peel had better hydration properties and oil holding capacity than other fibres analysed, although the swelling capacity was higher for lemon fibre. Freeze-dried persimmon peel fibre showed higher values of emulsion stability than commercial fibres. Finally, the antioxidant activity of the smallest sized persimmon peel fibre obtained by freeze-drying was higher than that for lemon, orange and peach fibre.The authors acknowledge the support of the Universtitat Politecnica de Valencia and certify that there is no conflict of interest with any financial organization regarding the material discussed in the manuscript.MartĂ­nez-Las Heras, R.; Landines, E.; Heredia GutiĂ©rrez, AB.; CastellĂł GĂłmez, ML.; AndrĂ©s Grau, AM. (2017). Influence of drying process and particle size of persimmon fibre on its physicochemical, antioxidant, hydration and emulsifying properties. Journal of Food Science and Technology. 54(9):1-11. doi:10.1007/s13197-017-2728-zS111549Abdul-Hamid A, Luan YS (2000) Functional properties of dietary fibre prepared from defatted rice bran. Food Chem 68:15–19Adams MR, Moss MO (1997) MicrobiologĂ­a de los alimentos. Acribia, ZaragozaAlĂłs C (2014) La superficie cultivada de caqui crece un 20% en 2013 y se quintuplica en una dĂ©cada. http://www.levante-emv.com/comarcas/2014/01/10/superficie-cultivada-caqui-crece-20/1067085.html . Accessed 21 Nov 2015AOAC (1990) Official methods of analysis of the association of official analytical chemists, vol 2, 15th edn. AOAC, Inc. Method 920.152, USA, pp 917AOAC (2000) Official methods of analysis of AOAC international, 17th edn. Gaithersburg, MD, USAArnal L, Del RĂ­o MA (2003) Removing astringency by carbon dioxide and nitrogen-enriched atmospheres in persimmon fruit cv. ‘Rojo brillante’. J Food Sci 68:1516–1518Basanta MF, Ponce NMA, Rojas AM, Stortz CA (2012) Effect of extraction time and temperature on the characteristics of loosely bound pectins from Japanese plum. Carbohydr Polym 89:230–235Chau CF, Wang YT, Wen YL (2007) Different micronization methods significantly improve the functionality of carrot insoluble fibre. Food Chem 100:1402–1408Chen XN, Fan JF, Yue X, Wu XR, Li LT (2008) Radical scavenging activity and phenolic compounds in persimmon (Diospyros kaki L. cv. Mopan). J Food Sci 73:24–28de Escalada Pla MF, GonzĂĄlez P, Sette P, Portillo F, Rojas AM, Gerschenson LN (2012) Effect of processing on physico-chemical characteristics of dietary fibre concentrates obtained from peach (Prunus persica L.) peel and pulp. Food Res Int 49:184–192de Moraes Crizel T, Jablonski A, de Oliveira Rios A, Rech R, FlĂŽres SH (2013) Dietary fiber from orange byproducts as a potential fat replacer. LWT-Food Sci Technol 53:9–14Femenia A, Lefebvre AC, Thebaudin JY, Robertson JA, Bourgeois CM (1997) Physical and sensory properties of model foods supplemented with cauliflower fibre. J Food Sci 62:635–639Femenia A, Selvendran RR, Ring SG, Robertson JA (1999) Effects of heat treatment and dehydration on properties of cauliflower fiber. J Agric Food Chem 47:728–732Figuerola F, Hurtado ML, Estevez AM, Asenjo F (2005) Fiber concentrate from apple pomace and citrus peel as potential fiber sources for food enrichment. Food Chem 91(3):395–401Garau MC, Simal S, RossellĂł C, Femenia A (2007) Effect of air-drying temperature on physico-chemical properties of dietary fibre and antioxidant capacity of orange (Citrus aurantium v. Canoneta) by-products. Food Chem 104:1014–1024George AP, Redpath S (2008) Health and medicinal benefits of persimmon fruit: a review. Adv Hort Sci 22:244–249Gorinstein S, Bartnikowska E, Kulasek G, Zemser M, Trakhtenberg S (1998) Dietary persimmon improves lipid metabolism in rats fed diets containing cholesterol. J Nutr 128:2023–2027Gorinstein S, Kulasek G, Bartnikowska E, Leontowicz M, Zemser M, Morawiec M (2000) The effects of diets, supplemented with either whole persimmon or phenol-free persimmon, on rats fed cholesterol. Food Chem 3:303–308HernĂĄndiz A (1999) El cultivo de kaki en la comunidad valenciana. Cuadernos de tecnologĂ­a agraria serie fructicultura No. 3 Generalitat Valenciana Conselleria de Agricultura, Pesca y AlimentaciĂłnINE (2014) Instituto Nacional de EstadĂ­stica, Spanish Statistical Office. http://www.ine.es/dyngs/INEbase/es/categoria.htm?c=Estadistica_P&cid=1254735727106 . Accessed 15 Dec 2014Kethireddipalli P, Hung YC, Phillips RD, McWatters KH (2002) Evaluating the role of cell wall material and soluble protein in the functionality of cowpea (Vigna unguiculata) pastes. J Food Sci 67:53–59LĂłpez G, Ros G, RincĂłn F, Periago MJ, MartĂ­nez MC, Ortuno J (1996) Relationship between physical and hydration properties of soluble and insoluble fiber of artichoke. J Agric Food Chem 44:2773–2778Ministry of Agriculture of Spain (2013). http://www.magrama.gob.es/es/ . Accessed 12 Dec 2013Perez-Jimenez J, Diaz-Rubio ME, Mesias M, Morales FJ, Saura-Calixto F (2014) Evidence for the formation of maillardized insoluble dietary fiber in bread: a specific kind of dietary fiber in thermally processed food. Food Res Int 55:391–396Raghavendra SN, Rastogi NK, Raghavarao KSMS, Tharanathan RN (2004) Dietary fiber from coconut residue: effects of different treatments and particle size on the hydration properties. Eur Food Res Technol 218:563–567Rajendran P, Nandakumar N, Rengarajan T, Palaniswami R, Gnanadhas EN, Lakshminarasaiah U, Nishigaki I (2014) Antioxidants and human diseases. Clin Chim Acta 436:332–347Robertson JA, Monredon FD, Dysseler P, Guillon F, AmadĂł R (2000) Hydration properties of dietary fiber and resistant starch: a European collaborative study. LWT-Food Sci Technol 33:72–79Sakanaka S, Tachibana Y, Okada Y (2005) Preparation and antioxidant properties of extracts of Japanese persimmon leaf tea (kakinoha-cha). Food Chem 89:569–575Shahidi F, Liyana-Pathirana CM, Wall DS (2006) Antioxidant activity of white and black sesame seeds and their hull fractions. Food Chem 99:478–483Singh U (2001) Functional properties of grain legume flours. J Food Sci Technol 38:191–199Storey M, Anderson P (2014) Income and race/ethnicity influence dietary fiber intake and vegetable consumption. Nutr Res 34:844–850Thebaudin JY, Lefebvre AC, Harrington M, Bourgeois CM (1997) Dietary fibres: nutritional and technological interest. Trends Food Sci Technol 8:41–48Vetter S, Kunzek H (2003) The influence of suspension solution conditions on the rehydration of apple cell wall material. Eur Food Res Technol 216:39–45Yasumatsu K, Sawada K, Maritaka S, Mikasi M, Toda J, Wada T, Ishi K (1972) Whipping and emulsifying properties of soybean products. Agric Biol Chem Tokyo 36:719–727Zha XQ, Wang JH, Yang XF, Liang H, Zhao LL, Bao SH, Zhou BB (2009) Antioxidant properties of polysaccharide fractions with different molecular mass extracted with hot-water from rice bran. Carbohydr Polym 78:570–57

    Varied effect of fortification of kale sprouts with novel organic selenium compounds on the synthesis of sulphur and phenolic compounds in relation to cytotoxic, antioxidant and anti-inflammatory activity

    Get PDF
    Selenium deficiency in daily diet is a common problem in many countries, thus searching for new dietary sources of this trace element is an important scientific challenge. Selenium biofortified sprouts from Brassicaceae family are good candidates for new dietary selenium source, as they reveal one of the highest capability to synthesize and accumulate this element. As a part of this extensive search, the influence of novel selenium organic compounds on fortification of kale sprouts biological activity was investigated. The present study is focused on the evaluation of the influence of these compounds on the synthesis of glucosinolates, isothiocyanates, indoles and phenolic acids in kale sprouts, together with the determination of their impact on antioxidant, anti-inflammatory and cytotoxic activity on gastrointestinal, prostate, and thyroid normal and cancer cells. The present study yields the conclusion that fortification of kale sprouts with selenium organic compounds bearing benzoselenoate scaffold influences the production of isothiocyanates, phenolic acids, and enhances the antioxidant properties of fortified sprouts. Notably, fortification with compounds based on benzoselenoate scaffold display chemoprotective properties in various cancer types (gastric, thyroid, and prostate cancer). The present study can facilitate the design of future agrochemicals. Compounds bearing benzoselenoate scaffold or selenyl phenylpiperazine motif seem to be particularly promising for these purposes.This study was partly supported by Polish grants N42/DBS/000231 and N42/DBS/000167. The publication was created with the use of equipment’s (Biotek Synergy microplate reader and Dionex HPLC system) co-financed by the qLIFE Priority Research Area under the program “Excellence Initiative—Research University” (No. 06/IDUB/2019/94) at Jagiellonian University

    Effect of Quinoa Seeds (Chenopodium quinoa) in Diet on some Biochemical Parameters and Essential Elements in Blood of High Fructose-Fed Rats

    Get PDF
    The effect of Chenopodium quinoa seeds on lipid profile, glucose level, protein metabolism and selected essential elements (Na, K, Ca, Mg) level was determined in high—fructose fed male Wistar rats. Fructose decreased significantly LDL [42%, p < 0.01] and activity of alkaline phosphatase [20%, p < 0.05], and increased triglycerides level [86%, p < 0.01]. The analysis of blood of rats fed quinoa indicated, that these seeds effectively reduced serum total cholesterol [26%, p < 0.05], LDL [57%, p < 0.008] and triglycerides [11%, p < 0.05] when compared to the control group. Quinoa seeds also significantly reduced the level of glucose [10%, p < 0.01] and plasma total protein level [16%, p < 0.001]. Fructose significantly decreased HDL [15%, p < 0.05] level in control group but when the quinoa seeds were added into the diet the decrease of HDL level was inhibited. Quinoa seeds did not prevent any adverse effect of increasing triglyceride level caused by fructose. It was shown in this study that quinoa seeds can reduce most of the adverse effects exerted by fructose on lipid profile and glucose level

    Characterization of metabolites in different kiwifruit varieties by NMR and fluorescence spectroscopy

    Get PDF
    It is known from our previous studies that kiwifruits, which are used in common human diet, have preventive properties of coronary artery disease. This study describes a combination of 1H NMR spectroscopy, multivariate data analyses and fluorescence measurements in differentiating of some kiwifruit varieties, their quenching and antioxidant properties. A total of 41 metabolites were identified by comparing with literature data Chenomx database and 2D NMR. The binding properties of the extracted polyphenols against HSA showed higher reactivity of studied two cultivars in comparison with the common Hayward. The results showed that the fluorescence of HSA was quenched by Bidan as much as twice than by other fruits. The correlation between the binding properties of polyphenols in the investigated fruits, their relative quantification and suggested metabolic pathway was established. These results can provide possible application of fruit extracts in pharmaceutical industry

    Antioxidant potential of bitter cumin (Centratherum anthelminticum (L.) Kuntze) seeds in in vitro models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bitter cumin (<it>Centratherum anthelminticum </it>(L.) Kuntze), is a medicinally important plant. Earlier, we have reported phenolic compounds, antioxidant, and anti-hyperglycemic, antimicrobial activity of bitter cumin. In this study we have further characterized the antioxidative activity of bitter cumin extracts in various in vitro models.</p> <p>Methods</p> <p>Bitter cumin seeds were extracted with a combination of acetone, methanol and water. The antioxidant activity of bitter cumin extracts were characterized in various <it>in vitro </it>model systems such as DPPH radical, ABTS radical scavenging, reducing power, oxidation of liposomes and oxidative damage to DNA.</p> <p>Results</p> <p>The phenolic extracts of bitter cumin at microgram concentration showed significant scavenging of DPPH and ABTS radicals, reduced phosphomolybdenum (Mo(VI) to Mo(V)), ferricyanide Fe(III) to Fe(II), inhibited liposomes oxidation and hydroxyl radical induced damage to prokaryotic genomic DNA. The results showed a direct correlation between phenolic acid content and antioxidant activity.</p> <p>Conclusion</p> <p>Bitter cumin is a good source of natural antioxidants.</p

    Nutraceutical therapies for atherosclerosis

    Get PDF
    Atherosclerosis is a chronic inflammatory disease affecting large and medium arteries and is considered to be a major underlying cause of cardiovascular disease (CVD). Although the development of pharmacotherapies to treat CVD has contributed to a decline in cardiac mortality in the past few decades, CVD is estimated to be the cause of one-third of deaths globally. Nutraceuticals are natural nutritional compounds that are beneficial for the prevention or treatment of disease and, therefore, are a possible therapeutic avenue for the treatment of atherosclerosis. The purpose of this Review is to highlight potential nutraceuticals for use as antiatherogenic therapies with evidence from in vitro and in vivo studies. Furthermore, the current evidence from observational and randomized clinical studies into the role of nutraceuticals in preventing atherosclerosis in humans will also be discussed
    • 

    corecore