31 research outputs found

    Selective nonresonant excitation of vibrational modes in suspended graphene via vibron-plasmon interaction

    Full text link
    We theoretically study a doped graphene ribbon suspended over a trench and subject to an ac-electrical field polarized perpendicularly to the graphene plane. In such a system, the external ac-field is coupled to the relatively slow mechanical vibrations via plasmonic oscillations in the isolated graphene sheet. We show that the electrical field generates an effective pumping of the mechanical modes. It is demonstrated that in the case of underdamped plasma oscillation, a peculiar kind of geometrical resonance of the mechanical and plasma oscillations appear. Namely the efficiency of pumping significantly increases when the wave number of the mechanical mode is in close agreement with the wave number of the plasma waves. The intensity of the pumping increases with the wave number of the mode. This phenomenon allows selective actuation of different mechanical modes although the driving field is homogeneous

    Quantum Theory of Magnetoelectromotive Instability in Nanoelectromechanical Systems with Positive Differential Conductance

    Get PDF
    We consider dc-electronic transport through a nanowire suspended between two normal-metal leads in the presence of an external magnetic field. We show the very mechanism through which such a system, whose stationary current-voltage characteristic is essentially characterized by positive differential conductance, becomes unstable with respect to an onset of self-excited oscillations in electrical transport and mechanical vibrations. The self-excitation mechanism is based on the correlation between the occupancy of the quantized spin-split electronic energy levels inside the nanowire and the velocity of the nanowire with the crucial influence of strong enough retardation effects in magnetomotive coupling coming from mechanical vibrations

    Nonresonant high frequency excitation of mechanical vibrations in graphene based nanoresonator

    Get PDF
    We theoretically analyse the dynamics of a suspended graphene membrane which is in tunnel contact with grounded metallic electrodes and subjected to ac-electrostatic potential induced by a gate electrode. It is shown that for such system the retardation effects in the electronic subsystem generate an effective pumping for the relatively slow mechanical vibrations if the driving frequency exceeds the inverse charge relax- ation time. Under this condition there is a critical value of the driving voltage ampli- tude above which the pumping overcomes the intrinsic damping of the mechanical resonator leading to a mechanical instability. This nonresonant instability is saturated by nonlinear damping and the system exhibits self-sustained oscillations of relatively large amplitude.Comment: Major revisio

    Ground-state cooling of a suspended nanowire through inelastic macroscopic quantum tunneling in a current-biased Josephson junction

    Get PDF
    We demonstrate that a suspended nanowire forming a weak link between two superconductors can be cooled to its motional ground state by a supercurrent flow. The predicted cooling mechanism has its origins in magnetic field induced inelastic tunneling of the macroscopic superconducting phase associated with the junction. Furthermore, we show the voltage-drop over the junction is proportional to the average population of the vibrational modes in the stationary regime, a phenomena which can be used to probe the level of cooling.Comment: 5 pages, 3 figure

    Shuttle-promoted nano-mechanical current switch

    Get PDF
    We investigate electron shuttling in three-terminal nanoelectromechanocal device built on a movable metallic rod oscillating between two drains. The device shows a double-well shaped electromechanical potential tunable by a source-drain bias voltage. Four stationary regimes controllable by the bias are found for this device: (i) single stable fixed point, (ii) two stable fixed points, (iii) two limiting cycles, and (iv) single limiting cycle. In the presence of perpendicular magnetic field the Lorentz force makes possible switching from one electromechanical state to another. The mechanism of tunable transitions between various stable regimes based on the interplay between voltage controlled electromechanical instability and magnetically controlled switching is suggested. The switching phenomenon is implemented for achieving both a reliable \emph{active} current switch and sensoring of small variations of magnetic field.Comment: 11 pages, 4 figure

    Self-excited Oscillations of Charge-Spin Accumulation Due to Single-electron Tunneling

    Get PDF
    We theoretically study electronic transport through a layer of quantum dots connecting two metallic leads. By the inclusion of an inductor in series with the junction, we show that steady electronic transport in such a system may be unstable with respect to temporal oscillations caused by an interplay between the Coulomb blockade of tunneling and spin accumulation in the dots. When this instability occurs, a new stable regime is reached, where the average spin and charge in the dots oscillate periodically in time. The frequency of these oscillations is typically of the order of 1GHz for realistic values of the junction parameters

    Self-sustained oscillations in nanoelectromechanical systems induced by Kondo resonance

    Full text link
    We investigate instability and dynamical properties of nanoelectromechanical systems represented by a single-electron device containing movable quantum dot attached to a vibrating cantilever via asymmetric tunnel contact. The Kondo resonance in electron tunneling between source and shuttle facilitates self-sustained oscillations originated from strong coupling of mechanical and electronic/spin degrees of freedom. We analyze stability diagram for two-channel Kondo shuttling regime due to limitations given by the electromotive force acting on a moving shuttle and find that the saturation amplitude of oscillation is associated with the retardation effect of Kondo-cloud. The results shed light on possible ways of experimental realization of dynamical probe for the Kondo-cloud by using high tunability of mechanical dissipation as well as supersensitive detection of mechanical displacement

    Cooling of a suspended nanowire by an AC Josephson current flow

    Get PDF
    We consider a nanoelectromechanical Josephson junction, where a suspended nanowire serves as a superconducting weak link, and show that an applied DC bias voltage an result in suppression of the flexural vibrations of the wire. This cooling effect is achieved through the transfer of vibronic energy quanta first to voltage driven Andreev states and then to extended quasiparticle electronic states. Our analysis, which is performed for a nanowire in the form of a metallic carbon nanotube and in the framework of the density matrix formalism, shows that such self-cooling is possible down to a level where the average occupation number of the lowest flexural vibration mode of the nanowire is 0.1\sim 0.1.Comment: 4 pages, 3 figure

    Voltage-driven superconducting weak link as a refrigerator for cooling of nanomechanical vibrations

    Get PDF
    We consider a new type of cooling mechanism for a suspended nanowire acting as a weak link between two superconductive electrodes. By applying a bias voltage over the system, we show that the system can be viewed as a refrigerator for the nanomechanical vibrations, where energy is continuously transferred from the vibrational degrees of freedom to the extended quasiparticle states in the leads through the periodic modulation of the inter-Andreev level separation. The necessary coupling between the electronic and mechanical degrees of freedom responsible for this energy-transfer can be achieved both with an external magnetic or electrical field, and is shown to lead to an effective cooling of the vibrating nanowire. Using realistic parameters for a suspended nanowire in the form of a metallic carbon nanotube we analyze the evolution of the density matrix and demonstrate the possibility to cool the system down to a stationary vibron population of 0.1\sim 0.1. Furthermore, it is shown that the stationary occupancy of the vibrational modes of the nanowire can be directly probed from the DC current responsible for carrying away the absorbed energy from the vibrating nanowire.Comment: 10 pages, 4 figure
    corecore