26 research outputs found

    Identification and fine mapping of a major QTL (qRtsc8-1) conferring resistance to maize tar spot complex and validation of production markers in breeding lines

    Get PDF
    Tar spot complex (TSC) is a major foliar disease of maize in many Central and Latin American countries and leads to severe yield loss. To dissect the genetic architecture of TSC resistance, a genome-wide association study (GWAS) panel and a bi-parental doubled haploid population were used for GWAS and selective genotyping analysis, respectively. A total of 115 SNPs in bin 8.03 were detected by GWAS and three QTL in bins 6.05, 6.07, and 8.03 were detected by selective genotyping. The major QTL qRtsc8-1 located in bin 8.03 was detected by both analyses, and it explained 14.97% of the phenotypic variance. To fine map qRtsc8-1, the recombinant-derived progeny test was implemented. Recombinations in each generation were backcrossed, and the backcross progenies were genotyped with Kompetitive Allele Specific PCR (KASP) markers and phenotyped for TSC resistance individually. The significant tests for comparing the TSC resistance between the two classes of progenies with and without resistant alleles were used for fine mapping. In BC5 generation, qRtsc8-1 was fine mapped in an interval of ~ 721 kb flanked by markers of KASP81160138 and KASP81881276. In this interval, the candidate genes GRMZM2G063511 and GRMZM2G073884 were identified, which encode an integral membrane protein-like and a leucine-rich repeat receptor-like protein kinase, respectively. Both genes are involved in maize disease resistance responses. Two production markers KASP81160138 and KASP81160155 were verified in 471 breeding lines. This study provides valuable information for cloning the resistance gene, and it will also facilitate the routine implementation of marker-assisted selection in the breeding pipeline for improving TSC resistance

    Genome-Wide Analysis of Tar Spot Complex Resistance in Maize Using Genotyping-by-Sequencing SNPs and Whole-Genome Prediction

    No full text
    Tar spot complex (TSC) is one of the most destructive foliar diseases of maize ( L.) in tropical and subtropical areas of Central and South America, causing significant grain yield losses when weather conditions are conducive. To dissect the genetic architecture of TSC resistance in maize, association mapping, in conjunction with linkage mapping, was conducted on an association-mapping panel and three biparental doubled-haploid (DH) populations using genotyping-by-sequencing (GBS) single-nucleotide polymorphisms (SNPs). Association mapping revealed four quantitative trait loci (QTL) on chromosome 2, 3, 7, and 8. All the QTL, except for the one on chromosome 3, were further validated by linkage mapping in different genetic backgrounds. Additional QTL were identified by linkage mapping alone. A major QTL located on bin 8.03 was consistently detected with the largest phenotypic explained variation: 13% in association-mapping analysis and 13.18 to 43.31% in linkage-mapping analysis. These results indicated that TSC resistance in maize was controlled by a major QTL located on bin 8.03 and several minor QTL with smaller effects on other chromosomes. Genomic prediction results showed moderate-to-high prediction accuracies in different populations using various training population sizes and marker densities. Prediction accuracy of TSC resistance was >0.50 when half of the population was included into the training set and 500 to 1,000 SNPs were used for prediction. Information obtained from this study can be used for developing functional molecular markers for marker-assisted selection (MAS) and for implementing genomic selection (GS) to improve TSC resistance in tropical maize
    corecore