2,444 research outputs found

    Towards 100 % recycling of reclaimed asphalt in road surface courses: binder design methodology and case studies

    Get PDF
    Reclaimed Asphalt (RA) has shown great potential to be reused in new asphalt mixtures, however its incorporation in top asphalt pavement layers is still very limited (10-30%). In fact, despite the advantages that its use implies, RA content in road pavement surface courses is still restricted in most countries due to mainly legislation limitations, but also some technical issues. This paper aims at being a step further to improve the latter by providing a methodology that allows producing fundamental inputs for confidently performing mix design of asphalt mixtures incorporating up to 100% RA. The methodology consists in an advanced preliminary binder’s blend design that can be used with any type of RA and also in presence of rejuvenators. This procedure includes in the production of blending charts and laws that considers the uncertainties on accounting the extent of final binder content, Degree of Blending and Replaced Virgin Binder. The description of the methodology is accompanied with results of two extreme case studies consisting in the preliminary design of binders for asphalt mixtures with high content of two types of RA corresponding to extreme cases: the short-term aged RA (STA-RA), having a very soft residual binder (Pen> 20dmm) and the long-term aged RA, having a much harder residual binder (Pen <10dmm). As a result, the proposed methodology allowed assessing the feasibility of using up to 90% of RA and determining whether the use of rejuvenating agents was needed

    Quantum resource estimates for computing elliptic curve discrete logarithms

    Get PDF
    We give precise quantum resource estimates for Shor's algorithm to compute discrete logarithms on elliptic curves over prime fields. The estimates are derived from a simulation of a Toffoli gate network for controlled elliptic curve point addition, implemented within the framework of the quantum computing software tool suite LIQUiUi|\rangle. We determine circuit implementations for reversible modular arithmetic, including modular addition, multiplication and inversion, as well as reversible elliptic curve point addition. We conclude that elliptic curve discrete logarithms on an elliptic curve defined over an nn-bit prime field can be computed on a quantum computer with at most 9n+2log2(n)+109n + 2\lceil\log_2(n)\rceil+10 qubits using a quantum circuit of at most 448n3log2(n)+4090n3448 n^3 \log_2(n) + 4090 n^3 Toffoli gates. We are able to classically simulate the Toffoli networks corresponding to the controlled elliptic curve point addition as the core piece of Shor's algorithm for the NIST standard curves P-192, P-224, P-256, P-384 and P-521. Our approach allows gate-level comparisons to recent resource estimates for Shor's factoring algorithm. The results also support estimates given earlier by Proos and Zalka and indicate that, for current parameters at comparable classical security levels, the number of qubits required to tackle elliptic curves is less than for attacking RSA, suggesting that indeed ECC is an easier target than RSA.Comment: 24 pages, 2 tables, 11 figures. v2: typos fixed and reference added. ASIACRYPT 201

    Theory and Phenomenology of mu in M theory

    Full text link
    We consider a solution to the mu-problem within M theory on a G2-manifold. Our study is based upon the discrete symmetry proposed by Witten that forbids the mu-term and solves the doublet-triplet splitting problem. We point out that the symmetry must be broken by moduli stabilization, describing in detail how this can occur. The mu-term is generated via Kahler interactions after strong dynamics in the hidden sector generate a potential which stabilizes all moduli and breaks supersymmetry with m_{3/2} ~ 20 - 30 TeV. We show that mu is suppressed relative to the gravitino mass, by higher dimensional operators, mu ~ 0.1 m_{3/2} ~ 2-3 TeV. This necessarily gives a Higgsino component to the (mostly Wino) LSP, and a small but non-negligible LSP-nucleon scattering cross-section. The maximum, spin-independent cross-sections are not within reach of the current XENON100 experiment, but are within reach of upcoming runs and upgrades.Comment: 34 pages, 3 figure

    Simulating plant produced material in the laboratory to replicate rheological and fatigue properties

    Get PDF
    As part of an effort by agencies and industry to move towards performance-based design to evaluate mixtures in the laboratory at a smaller scale before moving to full scale operation, laboratory protocols exist to simulate the aging that occurs as a material is produced. However, recent research has shown that these existing protocols may not accurately represent the changes a material experiences in a plant. Moreover, due to the focus of previous studies on the ability of the current method to replicate mixture characteristics and performance in an undamaged state, there is a lack of information as it relates to the damaged state. This paper presents a concise description of a study undertaken on a particular mixture to evaluate the differences in the behaviour of a standard asphalt concrete mixture produced in the laboratory and in the plant to assess the anticipated field performance at the mixture design stage. The results, in terms of the rheological properties of binders extracted and recovered from laboratory and plant produced mixtures as well as rheological, repeated cyclic fatigue, and cracking performance evaluation of the asphalt mixtures, have shown the ability of a short-term oven aging protocol to replicate plant produced material in the laboratory

    Effects of fire-fighting on a fully developed compartment fire: temperatures and emissions

    Get PDF
    This study evaluates the effects and consequences of fire-fighting operations on the main characteristics of a fully-developed compartment fire. It also presents data and evaluation of the conditions to which fire-fighters are exposed. A typical room enclosure was used with ventilation through a corridor to the front access door. The fire load was wooden pallets. Flashover was reached and the fire became fully developed before the involvement of the fire-fighting team. The progression of the fire-fighters through the corridor and the main-room suppression attack - in particular the effect of short, medium and long water pulses on either the hot gas layer or the fire seat - was charted against the compartment temperatures, heat release rates, oxygen levels and toxic species concentrations. The fire fighting team was exposed to extreme conditions, heat fluxes in excess of 35 kW/m2 and temperatures of the order of 250 oC even at crouching level. The fire equivalence ratio showed rich burning with high toxic emissions in particular of CO and unburnt hydrocarbons very early in the fire history and a stabilisation of the equivalence ratio at about 1.8. The fire fighting operations made the combustion temporarily richer and the emissions even higher
    corecore