1,880 research outputs found

    A Reanalysis of theUltraviolet Extinction from Interstellar Dust in the Large Magellanic Cloud

    Get PDF
    We have reanalyzed the Large Magellanic Cloud's (LMC) ultraviolet (UV) extinction using data from the IUE final archive. Our new analysis takes advantage of the improved signal--to--noise of the IUE NEWSIPS reduction, the exclusion of stars with very low reddening, the careful selection of well matched comparison stars, and an analysis of the effects of Galactic foreground dust. Differences between the average extinction curves of the 30 Dor region and the rest of the LMC are reduced compared to previous studies. We find that there is a group of stars with very weak 2175 Ang. bumps that lie in or near the region occupied by the supergiant shell, LMC 2, on the southeast side of 30 Dor. The average extinction curves inside and outside LMC 2 show a very significant difference in 2175 Ang. bump strength, but their far--UV extinctions are similar. While it is unclear whether or not the extinction outside the LMC 2 region can be fit with the relation of Cardelli, Clayton and Mathis (CCM), sightlines near LMC 2 cannot be fit with CCM due to their weak 2175 Ang. bumps. While the extinction properties seen in the LMC lie within the range of properties seen in the Galaxy, the correlations of UV extinction properties with environment seen in the Galaxy do not appear to hold in the LMC.Comment: 29 pages, 10 figures, to be published in Ap

    The evolution of RNAi as a defence against viruses and transposable elements

    Get PDF
    RNA interference (RNAi) is an important defence against viruses and transposable elements (TEs). RNAi not only protects against viruses by degrading viral RNA, but hosts and viruses can also use RNAi to manipulate each other's gene expression, and hosts can encode microRNAs that target viral sequences. In response, viruses have evolved a myriad of adaptations to suppress and evade RNAi. RNAi can also protect cells against TEs, both by degrading TE transcripts and by preventing TE expression through heterochromatin formation. The aim of our review is to summarize and evaluate the current data on the evolution of these RNAi defence mechanisms. To this end, we also extend a previous analysis of the evolution of genes of the RNAi pathways. Strikingly, we find that antiviral RNAi genes, anti-TE RNAi genes and viral suppressors of RNAi all evolve rapidly, suggestive of an evolutionary arms race between hosts and parasites. Over longer time scales, key RNAi genes are repeatedly duplicated or lost across the metazoan phylogeny, with important implications for RNAi as an immune defence

    A Quantitative Comparison of SMC, LMC, and Milky Way UV to NIR Extinction Curves

    Full text link
    We present an exhaustive, quantitative comparison of all of the known extinction curves in the Small and Large Magellanic Clouds (SMC and LMC) with our understanding of the general behavior of Milky Way extinction curves. The R_V dependent CCM relationship and the sample of extinction curves used to derive this relationship is used to describe the general behavior of Milky Way extinction curves. The ultraviolet portion of the SMC and LMC extinction curves are derived from archival IUE data, except for one new SMC extinction curve which was measured using HST/STIS observations. The optical extinction curves are derived from new (for the SMC) and literature UBVRI photometry (for the LMC). The near-infrared extinction curves are calculated mainly from 2MASS photometry supplemented with DENIS and new JHK photometry. For each extinction curve, we give R_V = A(V)/E(B-V) and N(HI) values which probe the same dust column as the extinction curve. We compare the properties of the SMC and LMC extinction curves with the CCM relationship three different ways: each curve by itself, the behavior of extinction at different wavelengths with R_V, and behavior of the extinction curve FM fit parameters with R_V. As has been found previously, we find that a small number of LMC extinction curves are consistent with the CCM relationship, but majority of the LMC and all of the SMC curves do not follow the CCM relationship. For the first time, we find that the CCM relationship seems to form a bound on the properties of all of the LMC and SMC extinction curves. This result strengthens the picture of dust extinction curves exhibit a continuum of properties between those found in the Milky Way and the SMC Bar. (abridged)Comment: 18 pages, 10 figures, ApJ in pres

    Ultraviolet through far-infrared spatially resolved analysis of the recent star formation in M81 (NGC 3031)

    Get PDF
    The recent star formation (SF) in the early-type spiral galaxy M81 is characterized using imaging observations from the far-ultraviolet to the far-infrared. We compare these data with models of the stellar, gas, and dust emission for subgalactic regions. Our results suggest the existence of a diffuse dust emission not directly linked to the recent star formation. We find a radial decrease of the dust temperature and dust mass density, and in the attenuation of the stellar light. The IR emission in M81 can be modeled with three components: (1) cold dust with a temperature = 18 ± 2 K, concentrated near the H II regions but also presenting a diffuse distribution; (2) warm dust with = 53 ± 7 K, directly linked with the H II regions; and (3) aromatic molecules, with diffuse morphology peaking around the H II regions. We derive several relationships to obtain total IR luminosities from IR monochromatic fluxes, and we compare five different star formation rate (SFR) estimators for H II regions in M81 and M51: the UV, H alpha, and three estimators based on Spitzer data. We find that the H alpha luminosity absorbed by dust correlates tightly with the 24 mu m emission. The correlation with the total IR luminosity is not as good. Important variations from galaxy to galaxy are found when estimating the total SFR with the 24 mu m or the total IR emission alone. The most reliable estimations of the total SFRs are obtained by combining the H alpha emission (or the UV) and an IR luminosity (especially the 24 mu m emission), which probe the unobscured and obscured SF, respectively. For the entire M81 galaxy, about 50% of the total SF is obscured by dust. The percentage of obscured SF ranges from 60% in the inner regions of the galaxy to 30% in the outer zones

    The evolution of RNAi as a defence against viruses and transposable elements

    Get PDF
    RNA interference (RNAi) is an important defence against viruses and transposable elements (TEs). RNAi not only protects against viruses by degrading viral RNA, but hosts and viruses can also use RNAi to manipulate each other's gene expression, and hosts can encode microRNAs that target viral sequences. In response, viruses have evolved a myriad of adaptations to suppress and evade RNAi. RNAi can also protect cells against TEs, both by degrading TE transcripts and by preventing TE expression through heterochromatin formation. The aim of our review is to summarize and evaluate the current data on the evolution of these RNAi defence mechanisms. To this end, we also extend a previous analysis of the evolution of genes of the RNAi pathways. Strikingly, we find that antiviral RNAi genes, anti-TE RNAi genes and viral suppressors of RNAi all evolve rapidly, suggestive of an evolutionary arms race between hosts and parasites. Over longer time scales, key RNAi genes are repeatedly duplicated or lost across the metazoan phylogeny, with important implications for RNAi as an immune defence

    Draft genome sequence of isolate Staphylococcus aureus LHSKBClinical, isolated from an infected hip

    Get PDF
    We report here the genome sequence of a clinical isolate of <i>Staphylococcus aureus</i> from an orthopedic infection. Phenotypically diverse <i>Staphylococcus aureus</i> strains are associated with orthopedic infections and subsequent implant failure, and some are highly resistant to antibiotics. This genome sequence will support further analyses of strains causing orthopedic infections

    The Excitation of Extended Red Emission: New Constraints on its Carrier From HST Observations of NGC 7023

    Get PDF
    The carrier of the dust-associated photoluminescence process causing the extended red emission (ERE) in many dusty interstellar environments remains unidentified. Several competing models are more or less able to match the observed broad, unstructured ERE band. We now constrain the character of the ERE carrier further by determining the wavelengths of the radiation that initiates the ERE. Using the imaging capabilities of the Hubble Space Telescope, we have resolved the width of narrow ERE filaments appearing on the surfaces of externally illuminated molecular clouds in the bright reflection nebula NGC 7023 and compared them with the depth of penetration of radiation of known wavelengths into the same cloud surfaces. We identify photons with wavelengths shortward of 118 nm as the source of ERE initiation, not to be confused with ERE excitation, however. There are strong indications from the well-studied ERE in the Red Rectangle nebula and in the high-|b| Galactic cirrus that the photon flux with wavelengths shortward of 118 nm is too small to actually excite the observed ERE, even with 100% quantum efficiency. We conclude, therefore, that ERE excitation results from a two-step process. While none of the previously proposed ERE models can match these new constraints, we note that under interstellar conditions most polycyclic aromatic hydrocarbon (PAH) molecules are ionized to the di-cation stage by photons with E > 10.5 eV and that the electronic energy level structure of PAH di-cations is consistent with fluorescence in the wavelength band of the ERE. Therefore, PAH di-cations deserve further study as potential carriers of the ERE. (abridged)Comment: Accepted for Publication in the Ap

    The Radial Distribution of the Interstellar Medium in Disk Galaxies: Evidence for Secular Evolution

    Get PDF
    One possible way for spiral galaxies to internally evolve would be for gas to flow to the center and form stars in a central disk (pseudo-bulge). If the inflow rate is faster than the rate of star formation, a central concentration of gas will form. In this paper we present radial profiles of stellar and 8 μm emission from polycyclic aromatic hydrocarbons (PAHs) for 11 spiral galaxies to investigate whether the interstellar medium in these galaxies contains a central concentration above that expected from the exponential disk. In general, we find that the two-dimensional CO and PAH emission morphologies are similar, and that they exhibit similar radial profiles. We find that in 6 of the 11 galaxies there is a central excess in the 8 μm and CO emission above the inward extrapolation of an exponential disk. In particular, all four barred galaxies in the sample have strong central excesses in both 8 μm and CO emission. These correlations suggest that the excess seen in the CO profiles is, in general, not simply due to a radial increase in the CO emissivity. In the inner disk, the ratio of the stellar to the 8 μm radial surface brightness is similar for 9 of the 11 galaxies, suggesting a physical connection between the average stellar surface brightness and the average gas surface brightness at a given radius. We also find that the ratio of the CO to 8 μm PAH surface brightness is consistent over the sample, implying that the 8 μm PAH surface brightness can be used as an approximate tracer of the interstellar medium

    The Dust in Lyman Break Galaxies

    Full text link
    We present our analysis of UV attenuation by internal dust of a large sample (N=906 galaxies) of Lyman Break Galaxies (LBGs). Using spectral energy distributions (SEDs) from the P\'EGASE galaxy spectral evolution model we apply dust attenuation corrections to the G-R colors using the Witt & Gordon (2000) models for radiative transfer in dusty galactic environments to arrive at the UV attenuation factors. We show that the dust in the LBGs exhibit SMC-like characteristics rather than MW-like, and that the dust geometry in these systems is most likely to be represented by a clumpy shell configuration. We show that the attenuation factor exhibits a pronounced dependence on the luminosity of the LBG, a_{1600}\propto (L/L_\sun)^\alpha, where 0.5α1.50.5\leq\alpha\leq1.5. The exponent α\alpha depends on the initial parameters of the stellar population chosen to model the galaxies and the dust properties. We find that the luminosity weighted average attenuation factor is likely to be in the range from 5.718.55.7-18.5, which is consistent with the upper limits to the star formation rate at 2<z<42<z<4 set by the FIR background. This implies that the current UV/optical surveys do detect the bulk of the star formation during the epoch 2<z<42<z<4, but require substantial correction for internal dust attenuation.Comment: 17 pages, 12 figures, uses AASTEX, accepted for publication in the Astrophysical Journa
    corecore