607 research outputs found

    Electric fields in plasmas under pulsed currents

    Full text link
    Electric fields in a plasma that conducts a high-current pulse are measured as a function of time and space. The experiment is performed using a coaxial configuration, in which a current rising to 160 kA in 100 ns is conducted through a plasma that prefills the region between two coaxial electrodes. The electric field is determined using laser spectroscopy and line-shape analysis. Plasma doping allows for 3D spatially resolved measurements. The measured peak magnitude and propagation velocity of the electric field is found to match those of the Hall electric field, inferred from the magnetic-field front propagation measured previously.Comment: 13 pages, 13 figures, submitted to PR

    Josephson Vortex States in Intermediate Fields

    Full text link
    Motivated by recent resistance data in high TcT_c superconductors in fields {\it parallel} to the CuO layers, we address two issues on the Josephson-vortex phase diagram, the appearances of structural transitions on the observed first order transition (FOT) curve in intermediate fields and of a lower critical point of the FOT line. It is found that some rotated pinned solids are more stable than the ordinary rhombic pinned solids with vacant interlayer spacings and that, due to the vertical portion in higher fields of the FOT line, the FOT tends to be destroyed by creating a lower critical point.Comment: 12 pages, 3 figures. To appear in J.Phys.Soc.Jpn. 71, No.2 (February, 2002

    Parametric Generation of Subharmonics in a Composite Multiferroic Resonator

    Get PDF
    Parametric generation of subharmonics in a composite multiferroic resonator is observed and investigated. The resonator has the form of a disk and contains two mechanically coupled layers, one of which is amorphous ferromagnet Fe-B-Si-C and the other piezoelectric lead zirconate titanate. The resonator is placed inside two planar electromagnetic coils with orthogonal axes. A static magnetic field of 0-100 Oe is applied parallel to the plane of the resonator. The resonator is excited in the frequency range f = 9-10 kHz by either a harmonic magnetic field with an amplitude of up to 5 Oe generated by one of the coils, or a harmonic electric field with an amplitude of up to 500 V/cm applied to the piezoelectric layer. When the pump field is above a certain threshold, generation of a subharmonic of half-frequency (f/2) is observed for three different excitation methods. The first two employed either the direct magnetoelectric effect or the converse magnetoelectric effect, while in the third a transformer system is utilized. The subharmonic is generated in a limited range of pump frequencies and its amplitude is a nonlinear function of both the pump-field amplitude and the strength of static magnetic field. A theory of parametric generation of the subharmonic in a multiferroic resonator is developed, taking into account the magnetoacoustic nonlinearity of the ferromagnetic layer of the structure and excitation of acoustic resonances near the pump and subharmonic frequencies. The theory qualitatively describes the main characteristics of the subharmonic generation.</p

    Parametric Generation of Subharmonics in a Composite Multiferroic Resonator

    Get PDF
    Parametric generation of subharmonics in a composite multiferroic resonator is observed and investigated. The resonator has the form of a disk and contains two mechanically coupled layers, one of which is amorphous ferromagnet Fe-B-Si-C and the other piezoelectric lead zirconate titanate. The resonator is placed inside two planar electromagnetic coils with orthogonal axes. A static magnetic field of 0-100 Oe is applied parallel to the plane of the resonator. The resonator is excited in the frequency range f = 9-10 kHz by either a harmonic magnetic field with an amplitude of up to 5 Oe generated by one of the coils, or a harmonic electric field with an amplitude of up to 500 V/cm applied to the piezoelectric layer. When the pump field is above a certain threshold, generation of a subharmonic of half-frequency (f/2) is observed for three different excitation methods. The first two employed either the direct magnetoelectric effect or the converse magnetoelectric effect, while in the third a transformer system is utilized. The subharmonic is generated in a limited range of pump frequencies and its amplitude is a nonlinear function of both the pump-field amplitude and the strength of static magnetic field. A theory of parametric generation of the subharmonic in a multiferroic resonator is developed, taking into account the magnetoacoustic nonlinearity of the ferromagnetic layer of the structure and excitation of acoustic resonances near the pump and subharmonic frequencies. The theory qualitatively describes the main characteristics of the subharmonic generation.</p

    Rapid dissipation of magnetic fields due to Hall current

    Get PDF
    We propose a mechanism for the fast dissipation of magnetic fields which is effective in a stratified medium where ion motions can be neglected. In such a medium, the field is frozen into the electrons and Hall currents prevail. Although Hall currents conserve magnetic energy, in the presence of density gradients, they are able to create current sheets which can be the sites for efficient dissipation of magnetic fields. We recover the frequency, ωMH\omega_{MH}, for Hall oscillations modified by the presence of density gradients. We show that these oscillations can lead to the exchange of energy between different components of the field. We calculate the time evolution and show that magnetic fields can dissipate on a timescale of order 1/ωMH1/\omega_{MH}. This mechanism can play an important role for magnetic dissipation in systems with very steep density gradients where the ions are static such as those found in the solid crust of neutron stars.Comment: 9 pages, changed fig.

    Cosmic ray tests of the D0 preshower detector

    Full text link
    The D0 preshower detector consists of scintillator strips with embedded wavelength-shifting fibers, and a readout using Visible Light Photon Counters. The response to minimum ionizing particles has been tested with cosmic ray muons. We report results on the gain calibration and light-yield distributions. The spatial resolution is investigated taking into account the light sharing between strips, the effects of multiple scattering and various systematic uncertainties. The detection efficiency and noise contamination are also investigated.Comment: 27 pages, 24 figures, submitted to NIM

    Instabilities and disorder-driven first-order transition of the vortex lattice

    Full text link
    Transport studies in a Corbino disk geometry suggest that the Bragg glass phase undergoes a first-order transition into a disordered solid. This transition shows a sharp reentrant behavior at low fields. In contrast, in the conventional strip configuration, the phase transition is obscured by the injection of the disordered vortices through the sample edges, which results in the commonly observed vortex instabilities and smearing of the peak effect in NbSe2 crystals. These features are found to be absent in the Corbino geometry, in which the circulating vortices do not cross the sample edges.Comment: 12 pages 3 figures. Accepted for publication in Physical Review Letter

    Geophysical Observatory in Kamchatka region for monitoring of phenomena connected with seismic activity

    Get PDF
    Regular monitoring of some geophysical parameters in association with seismicity has been carried out since last year at the Japan-Russian Complex Geophysical Observatory in the Kamchatka region. This observatory was organized in connection with the ISTC project in Russia and was motivated by the results of the FRONTIER/RIKEN and FRONTIER/NASDA research projects in Japan. The main purpose of the observations is to investigate the electromagnetic and acoustic phenomena induced by the lithosphere processes (especially by seismic activity). The seismicity of the Kamchatka area is analyzed and a description of the observatory equipment is presented. At present, the activity of the observatory includes the seismic (frequency range &#x2206;F = 0.5 – 40 Hz) and meteorological recordings, together with seismo-acoustic (&#x2206;F = 30 – 1000 Hz) and electromagnetic observations: three-component magnetic ULF variations ( &#x2206;F = 0.003 – 30 Hz), three-component electric potential variations ( &#x2206;F <u><</u> 1.0 Hz), and VLF transmitter’s signal perturbations ( &#x2206;F ~ 10 – 40 kHz)
    • …
    corecore