7 research outputs found

    Interacting supernovae and supernova impostors. LSQ13zm: an outburst heralds the death of a massive star

    Get PDF
    We report photometric and spectroscopic observations of the optical transient LSQ13zm. Historical data reveal the presence of an eruptive episode (that we label as ‘2013a’) followed by a much brighter outburst (‘2013b’) three weeks later, that we argue to be the genuine supernova explosion. This sequence of events closely resemble those observed for SN 2010mc and (in 2012) SN 2009ip. The absolute magnitude reached by LSQ13zm during 2013a (MR = ?14.87 ± 0.25?mag) is comparable with those of supernova impostors, while that of the 2013b event (MR = ?18.46 ± 0.21?mag) is consistent with those of interacting supernovae. Our spectra reveal the presence of a dense and structured circumstellar medium, probably produced through numerous pre-supernova mass-loss events. In addition, we find evidence for high-velocity ejecta, with a fraction of gas expelled at more than 20 000?km s?1. The spectra of LSQ13zm show remarkable similarity with those of well-studied core-collapse supernovae. From the analysis of the available photometric and spectroscopic data, we conclude that we first observed the last event of an eruptive sequence from a massive star, likely a Luminous Blue Variable, which a short time later exploded as a core-collapse supernova. The detailed analysis of archival images suggest that the host galaxy is a star-forming Blue Dwarf Compact Galaxy

    Multicolour photometry of SS 433 during the monitoring campaign in May/June 1987

    No full text
    Wetensch. publicatieFaculteit der Wiskunde en Natuurwetenschappe

    Multicolour photometry of SS 433 during the monitoring campaign in May/June 1987

    No full text
    Wetensch. publicatieFaculteit der Wiskunde en Natuurwetenschappe

    Progenitor and Remnant of the Luminous Red Nova V838 Monocerotis

    No full text
    © 2020, Pleiades Publishing, Ltd. Abstract—The article presents the results of multicolor photometry, medium and low resolution spectroscopy of the red nova V838 Mon remnant for 16 years after the 2002 outburst. We also used the archival photometry with the photographic plates of the Sonneberg and Moscow collections from 1928 to 1994. Analysis of these observational data confirmed that the progenitor of the V838 Mon explosion was a wide pair of B3V type stars of reduced luminosity. A brighter component exploded; it was 36 per cent brighter than its companion, and located on the zero-age main sequence of the Spectrum–Luminosity Diagram. Immediately after the outburst, in the fall of 2002, the remnant was a brown L-type supergiant (sgL), but in the fall of 2003 its spectrum changed to M type with a blue radiation excess appeared in the spectral energy distribution, which we interpreted as the reflection effect of the B type companion on the dust formed on the M star. In 2008, the companion was engulfed by the expanding explosion remnant, a type M supergiant (sgM). When the companion was immersing in the expanding M-star, a void was discovered under the M-star upper layer, in which the companion moved for about 200 days. Over the past 10 years, the luminosity of the M star has increased in the V filter by a factor of 10, and the spectral type has changed from M7.5 to M5.5. Based on radial velocities in the BaII 6497 Å and CaI 6572 Å lines, a deceleration of the expanding envelope of the M supergiant was detected, and in 2018, the envelope velocity approached to the heliocentric velocity of the star +71 km s−1. Quasi-periodic changes with a period of 320 days appeared then in the light curves, especially clearly expressed in I filter. We assume that the remnant has an elongated structure, and its rotation period is about 640 days. This is probably a gigantic contact system that will become a detached binary system in future development. The observations do not confirm the assumption that the explosion of one of the V838 Mon components was due to the merger of a compact binary system components located in a hierarchical triple one. Two hypotheses were proposed on the nature of the explosion of one of the V838 Mon components, directly based on the early age of this system: (1) the ignition of thermonuclear burning of hydrogen in the core after the gravitational compression of a protostar; (2) the fragmentation of the core inside a rapidly rotating star in the stage of gravitational compression of a protostar, and later, the subsequent defragmentation (merger of the core components) due to the loss of torque
    corecore