46 research outputs found

    Design and Optimisation of Flotation Circuits with Large Cells

    Get PDF
    The recent trend of flotation plant design with cells as large as 300 m3 is mainly driven by economic considerat-ions such as lower capital, operating and maintenance costs. Large cells offer distinct economic advantages, but poses major challenges as flotation plant design consi-derations are signcantly different from that of the tradi-tional circuits with small cells. The conventional empirical scale-up relationships are not applicable for circuits with large cells. This is mainly due to the lack of understanding of metallurgical and design scale-up principles of large cells. In addition, large cell operation is not well understood The present trend of installation of fewer cells in a bank requires each cell to be operated very efficiently and tolerance for cell inefficiencies is very low

    A general scheme for the effective-mass Schrodinger equation and the generation of the associated potentials

    Full text link
    A systematic procedure to study one-dimensional Schr\"odinger equation with a position-dependent effective mass (PDEM) in the kinetic energy operator is explored. The conventional free-particle problem reveals a new and interesting situation in that, in the presence of a mass background, formation of bound states is signalled. We also discuss coordinate-transformed, constant-mass Schr\"odinger equation, its matching with the PDEM form and the consequent decoupling of the ambiguity parameters. This provides a unified approach to many exact results known in the literature, as well as to a lot of new ones.Comment: 16 pages + 1 figure; minor changes + new "free-particle" problem; version published in Mod. Phys. Lett.

    Well-posedness for degenerate third order equations with delay and applications to inverse problems

    Get PDF
    [EN] In this paper, we study well-posedness for the following third-order in time equation with delay <disp-formula idoperators defined on a Banach space X with domains D(A) and D(B) such that t)is the state function taking values in X and u(t): (-, 0] X defined as u(t)() = u(t+) for < 0 belongs to an appropriate phase space where F and G are bounded linear operators. Using operator-valued Fourier multiplier techniques we provide optimal conditions for well-posedness of equation (0.1) in periodic Lebesgue-Bochner spaces Lp(T,X), periodic Besov spaces Bp,qs(T,X) and periodic Triebel-Lizorkin spaces Fp,qs(T,X). A novel application to an inverse problem is given.The first, second and third authors have been supported by MEC, grant MTM2016-75963-P. The second author has been supported by AICO/2016/30. The fourth author has been supported by MEC, grant MTM2015-65825-P.Conejero, JA.; Lizama, C.; Murillo-Arcila, M.; Seoane SepĂșlveda, JB. (2019). Well-posedness for degenerate third order equations with delay and applications to inverse problems. Israel Journal of Mathematics. 229(1):219-254. https://doi.org/10.1007/s11856-018-1796-8S2192542291K. Abbaoui and Y. Cherruault, New ideas for solving identification and optimal control problems related to biomedical systems, International Journal of Biomedical Computing 36 (1994), 181–186.M. Al Horani and A. Favini, Perturbation method for first- and complete second-order differential equations, Journal of Optimization Theory and Applications 166 (2015), 949–967.H. Amann, Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications, Mathematische Nachrichten 186 (1997), 5–56.U. A. Anufrieva, A degenerate Cauchy problem for a second-order equation. A wellposedness criterion, Differentsial’nye Uravneniya 34 (1998), 1131–1133; English translation: Differential Equations 34 (1999), 1135–1137.W. Arendt and S. Bu, The operator-valued Marcinkiewicz multiplier theorem and maximal regularity, Mathematische Zeitschrift 240 (2002), 311–343.W. Arendt and S. Bu, Operator-valued Fourier multipliers on periodic Besov spaces and applications, Proceedings of the Edinburgh Mathematical Society 47 (2004), 15–33.W. Arendt, C. Batty and S. Bu, Fourier multipliers for Holder continuous functions and maximal regularity, Studia Mathematica 160 (2004), 23–51.V. Barbu and A. Favini, Periodic problems for degenerate differential equations, Rendiconti dell’Istituto di Matematica dell’UniversitĂ  di Trieste 28 (1996), 29–57.A. BĂĄtkai and S. Piazzera, Semigroups for Delay Equations, Research Notes in Mathematics, Vol. 10, A K Peters, Wellesley, MA, 2005.S. Bu, Well-posedness of second order degenerate differential equations in vector-valued function spaces, Studia Mathematica 214 (2013), 1–16.S. Bu and G. Cai, Periodic solutions of third-order degenerate differential equations in vector-valued functional spaces, Israel Journal of Mathematics 212 (2016), 163–188.S. Bu and G. Cai, Well-posedness of second-order degenerate differential equations with finite delay in vector-valued function spaces, Pacific Journal of Mathematics 288 (2017), 27–46.S. Bu and Y. Fang, Periodic solutions of delay equations in Besov spaces and Triebel–Lizorkin spaces, Taiwanese Journal of Mathematics 13 (2009), 1063–1076.S. Bu and J. Kim, Operator-valued Fourier multipliers on periodic Triebel spaces, Acta Mathematica Sinica 21 (2005), 1049–1056.G. Cai and S. Bu, Well-posedness of second order degenerate integro-differential equations with infinite delay in vector-valued function spaces, Mathematische Nachrichten 289 (2016), 436–451.R. Chill and S. Srivastava, Lp-maximal regularity for second order Cauchy problems, Mathematische Zeitschrift 251 (2005), 751–781.R. Denk, M. Hieber and J. PrĂŒss, R-boundedness, Fourier multipliers and problems of elliptic and parabolic type, Memoirs of the American Mathematical Society 166 (2003).O. Diekmann, S. A. van Giles, S. M. Verduyn Lunel and H.-O. Walther, Delay Equations, Applied Mathematical Sciences, Vol. 110, Springer, New York, 1995.K. J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, Vol. 194, Springer, New York, 2000.M. Fabrizio, A. Favini and G. Marinoschi, An optimal control problem for a singular system of solid liquid phase-transition, Numerical Functional Analysis and Optimization 31 (2010), 989–1022.A. Favini and G. Marinoschi, Periodic behavior for a degenerate fast diffusion equation, Journal of Mathematical Analysis and Applications 351 (2009), 509–521.A. Favini and G. Marinoschi, Identification of the time derivative coefficients in a fast diffusion degenerate equation, Journal of Optimization Theory and Applications 145 (2010), 249–269.A. Favini and A. Yagi, Degenerate differential equations in Banach spaces, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 215, Marcel Dekker, New York, 1999.X. L. Fu and M. Li, Maximal regularity of second-order evolution equations with infinite delay in Banach spaces, Studia Mathematica 224 (2014), 199–219.G. C. Gorain, Boundary stabilization of nonlinear vibrations of a flexible structure in a bounded domain in Rn, Journal of Mathematical Analysis and Applications 319 (2006), 635–650.P. Grisvard, Équations diffĂ©rentielles abstraites, Annales Scientifiques de l’école Normale Superieure 2 (1969), 311–395.J. K. Hale and W. Huang, Global geometry of the stable regions for two delay differential equations, Journal of Mathematical Analysis and Applications 178 (1993), 344–362.Y. Hino, S. Murakami and T. Naito, Functional Differential Equations with Infinite Delay, Lecture Notes in Mathematics, Vol. 1473, Springer, Berlin, 1991.B. Kaltenbacher, I. Lasiecka and M. Pospieszalska, Well-posedness and exponential decay of the energy in the nonlinear Moore-Gibson-Thomson equation arising in high intensity ultrasound, Mathematical Models & Methods in Applied Sciences 22 (2012), 1250035.V. Keyantuo and C. Lizama, Fourier multipliers and integro-differential equations in Banach spaces, Journal of the London Mathematical Society 69 (2004), 737–750.V. Keyantuo and C. Lizama, Maximal regularity for a class of integro-differential equations with infinite delay in Banach spaces, Studia Mathematica 168 (2005), 25–50.V. Keyantuo, C. Lizama and V. Poblete, Periodic solutions of integro-differential euations in vector-valued function spaces, Journal of Differential Equations 246 (2009), 1007–1037.C. Lizama, Fourier multipliers and periodic solutions of delay equations in Banach spaces, Journal of Mathematical Analysis and Applications 324 (2006), 921–933.C. Lizama and V. Poblete, Maximal regularity of delay equations in Banach spaces, Studia Mathematica 175 (2006), 91–102.C. Lizama and R. Ponce, Periodic solutions of degenerate differential equations in vector valued function spaces, Studia Mathematica 202 (2011), 49–63.C. Lizama and R. Ponce, Maximal regularity for degenerate differential equations with infinite delay in periodic vector-valued function spaces, Proceedings of the Edinburgh Mathematical Society 56 (2013), 853–871.R. Marchand, T. Mcdevitt and R. Triggiani, An abstract semigroup approach to the third-order Moore–Gibson–Thompson partial differential equation arising in highintensity ultrasound: structural decomposition, spectral analysis, exponential stability, Mathematical Methods in the Applied Sciences 35 (2012), 1896–1929.V. Poblete, Solutions of second-order integro-differential equations on periodic Besov spaces, Proceedings of the Edinburgh Mathematical Society 50 (2007), 477–492.V. Poblete and J. C. Pozo, Periodic solutions of an abstract third-order differential equation, Studia Mathematica 215 (2013), 195–219.J. PrĂŒss, Evolutionary Integral Equations and Applications, Monographs in Mathematics, Vol. 87, BirkhĂ€user, Heidelberg, 1993.G. A. Sviridyuk and V. E. Fedorov, Linear Sobolev type Equations and Degenerate Semigroups of Operators, Inverse and Ill-posed Problems Series, VSP, Utrecht, 2003.L. Weis, Operator-valued Fourier multiplier theorems and maximal Lp-regularity, Mathematische Annalen 319 (2001), 735–758

    Therapeutic implications of cellular and molecular biology of cancer stem cells in melanoma

    Full text link

    The empirical prediction of bubble surface area flux in mechanical flotation cells from cell design and operating data

    No full text
    In the operation of mechanical flotation cells, the dispersion of gas into fine bubbles may be expressed by three indicators : bubble size, gas holdup and superficial gas velocity. Taken together, these properties determine the bubble surface area flux (S) in the cell, which has been found to have a strong correlation with the flotation rate constant (k). Previous work by the authors has indicated that it is possible to predict the value of k for a known ore in a cell from a knowledge of the bubble surface area flux generated in that cell. In order to make good use of this finding, an empirical model has been developed to predict S in mechanical flotation cells, using data from extensive pilot industrial scale test programs. The model is able to predict S from cell operating conditions, impeller design and feed properties. The model has been validated for different types and cell sizes, impeller types and ore types, in different independent investigations carried out at several concentrators in Australia and South Africa. This paper outlines the development of the model, the parameter estimation, and the validation using a number of additional data sets

    Studies on impeller type, impeller speed and air flow rate in an industrial scale flotation cell part 2: Effect on gas holdup

    No full text
    Gas holdup was measured at different locations in a 2.8 m portable industrial scale subaeration flotation cell, treating zinc cleaner feed at Hellyer Concentrator in Tasmania, Australia. The cell was fitted in turn with four different impeller-stator systems, and operated over a range of air flow rates and impeller speeds. The gas holdup was found to increase with increase in impeller speed as well as with increase in air flow rate, the manner in which it increased depended on the impeller type. Values ranged from 2% to 33%, with the greatest values produced by the Outokumpu impeller

    Modelling of the Mt Isa rougher-scavenger copper flotation circuit using size-by-liberation data

    No full text
    A flotation model developed at the Julius Kruttschnitt Mineral Research Centre was used to predict the performance of copper rougher and scavenger circuits at the copper concentrator at Mount Isa Mines. The model describes the kinetic response of an ore in a flotation cell in terms of ore floatability, cell characteristics and froth recovery. The floatability parameters of the rougher feed ore were obtained directly from a detailed plant survey. Flotation analysis was carried out for twenty different size-by-liberation classes to account for the effects of particle size and liberation on flotation. This paper investigates the capability of the model to predict the flotation behavior of 20 different size-by-liberation classes in the rougher and the scavenger banks

    Studies on impeller type, impeller speed and air flow rate in an industrial scale flotation cell. Part 5: Validation of k - Sb relationship and effect of froth depth.

    No full text
    A previous investigation carried out by the authors at the Hellyer concentrator, using a 3 m cell fitted with four different impellers treating plant zinc cleaner feed ore, suggested a linear correlation between flotation rate constant k and bubble surface area flux S. The relationship between k and S was found to be independent of impeller type. This paper describes an investigation at the Scuddles concentrator in Western Australia to validate the findings at Hellyer for a different ore. Unlike the Hellyer work for which only one froth depth was used, the Scuddles work was carried out at different froth depths using the same 3 m cell fitted in turn with three different impellers viz. Batequip, Dorr-Oliver and Outokumpu. The results confirmed the strong correlation between k and S at three different froth depths used for the study. Moreover, this relationship was found to be practically independent of impeller type. However, at shallow froth depth the k-S relationship was found to be linear, whereas at intermediate and deep froth depths the relationship was found to be non-linear with the froth playing an important role in the overall kinetics

    On initial conditions for a boundary stabilized hybrid Euler-Bernoulli beam

    No full text
    corecore