388 research outputs found

    Botulinum-A toxin injections into the detrusor muscle decrease nerve growth factor bladder tissue levels in patients with neurogenic detrusor overactivity

    Get PDF
    Purpose: We investigated the effects of BTX-A on visceral afferent nerve transmission by measuring bladder tissue NGF levels in patients with neurogenic detrusor overactivity before and after intravesical treatment with BTX-A. We also compared the bladder tissue NGF content with clinical and urodynamic data. Materials and Methods: A total of 23 patients underwent clinical evaluation and urodynamics with detection of the UDC threshold, maximum pressure and maximum cystometric capacity before, and at the 1 and 3-month followups. Endoscopic bladder Wall biopsies were also obtained at the same time points. NGF levels were measured in tissue homogenate by enzyme-linked immunosorbent assay (Promega, Madison, Wisconsin). Results: At 1 and 3 months mean catheterization and incontinent episodes were significantly decreased (p < 0.05 and < 0.001, respectively). On urodynamics we detected a significant increase in the UDC threshold and maximum cystometric capacity, and a significant decrease in UDC maximum pressure at the 1 and 3-month followups compared to baseline (each p < 0.001). At the same time points we detected a significant decrease in NGF bladder tissue content (each p < 0.02). Conclusions: BTX-A intravesical treatment induces a state of NGF deprivation in bladder tissue that persists at least up to 4 months. As caused by BTX-A, the decrease in acetylcholine release at the presynaptic level may induce a decrease in detrusor contractility and in NGF production by the detrusor muscle. Alternatively BTX-A can decrease the bladder level of neurotransmitters that normally modulate NGF production and release

    Influence of different scanning techniques on in vitro performance of CAD-CAM-fabricated fiber posts

    Get PDF
    This study assessed push-out strength, cement layer thickness, and interfacial nanoleakage of luted fiber posts fabricated with computer-aided design/computer-assisted manufacture (CAD/CAM) technology after use of 1 of 3 scanning techniques, namely, direct scanning of the post space (DS), scanning of a polyether impression of the post space (IS), and scanning of a plaster model of the post space (MS). Thirty premolars were randomly assigned to three groups corresponding to the scanning technique. Posts were computer-designed and milled from experimental fiber-reinforced composite blocks. The mean (±SD) values for push-out strength and cement thickness were 17.1 ± 7.7 MPa and 162 ± 24 μm, respectively, for DS, 10.7 ± 4.6 MPa and 187 ± 50 μm for IS, and 12.0 ± 7.2 MPa and 258 ± 78 μm for MS specimens. Median (interquartile range) interfacial nanoleakage scores were 3 (2-4) for DS, 2.5 (2-4) for IS, and 3 (2-4) for MS. Post retention was better for fiber posts fabricated by DS technique than for those fabricated by IS and MS. Cement thickness did not differ between DS and IS specimens, but the cement layer was significantly thicker in the MS group than in the other two groups. Scanning technique did not affect sealing ability, as the three groups had comparable nanoleakage values

    Assessment of antibody library diversity through next generation sequencing and technical error compensation

    Get PDF
    Antibody libraries are important resources to derive antibodies to be used for a wide range of applications, from structural and functional studies to intracellular protein interference studies to developing new diagnostics and therapeutics. Whatever the goal, the key parameter for an antibody library is its complexity (also known as diversity), i.e. the number of distinct elements in the collection, which directly reflects the probability of finding in the library an antibody against a given antigen, of sufficiently high affinity. Quantitative evaluation of antibody library complexity and quality has been for a long time inadequately addressed, due to the high similarity and length of the sequences of the library. Complexity was usually inferred by the transformation efficiency and tested either by fingerprinting and/or sequencing of a few hundred random library elements. Inferring complexity from such a small sampling is, however, very rudimental and gives limited information about the real diversity, because complexity does not scale linearly with sample size. Next-generation sequencing (NGS) has opened new ways to tackle the antibody library complexity quality assessment. However, much remains to be done to fully exploit the potential of NGS for the quantitative analysis of antibody repertoires and to overcome current limitations. To obtain a more reliable antibody library complexity estimate here we show a new, PCR-free, NGS approach to sequence antibody libraries on Illumina platform, coupled to a new bioinformatic analysis and software (Diversity Estimator of Antibody Library, DEAL) that allows to reliably estimate the complexity, taking in consideration the sequencing error.Funded by European Union Seventh Framework Program [grant No. 604102 A.C.] (Human Brain Project). https://www.humanbrainproject.eu/. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
    corecore