10 research outputs found

    Traffic signal settings optimization using fradient descent

    Get PDF
    We investigate performance of a gradient descent optimization (GR) applied to the traffic signal setting problem and compare it to genetic algorithms. We used neural networks as metamodels evaluating quality of signal settings and discovered that both optimization methods produce similar results, e.g., in both cases the accuracy of neural networks close to local optima depends on an activation function (e.g., TANH activation makes optimization process converge to different minima than ReLU activation)

    Identifying Promising Candidate Radiotherapy Protocols via GPU-GA in-silico

    Full text link
    Around half of all cancer patients, world-wide, will receive some form of radiotherapy (RT) as part of their treatment. And yet, despite the rapid advance of high-throughput screening to identify successful chemotherapy drug candidates, there is no current analogue for RT protocol screening or discovery at any scale. Here we introduce and demonstrate the application of a high-throughput/high-fidelity coupled tumour-irradiation simulation approach, we call "GPU-GA", and apply it to human breast cancer analogue - EMT6/Ro spheroids. By analysing over 9.5 million candidate protocols, GPU-GA yields significant gains in tumour suppression versus prior state-of-the-art high-fidelity/-low-throughput computational search under two clinically relevant benchmarks. By extending the search space to hypofractionated areas (> 2 Gy/day) yet within total dose limits, further tumour suppression of up to 33.7% compared to state-of-the-art is obtained. GPU-GA could be applied to any cell line with sufficient empirical data, and to many clinically relevant RT considerations

    Ruch drogowy a sztuczna inteligencja

    No full text
    corecore