31 research outputs found

    Poly(ethyleneimine)/Poly(acrylic acid) Multilayer Coatings with Peripherally Bound Staphylococcus aureus Bacteriophages Have Antibacterial Properties

    Get PDF
    Herein, polyelectrolyte (PEL)-based coatings including peripherally bound bacteriophages (PHAG) at model substrates are reported to showcase their applicability on surgically relevant implants with respect to surface protection against bacterial proliferation and biofilm formation. The established layer-by-layer concept based on the consecutive adsorption of oppositely charged PEL was applied to generate polyelectrolyte multilayer (PEM) coatings with either a cationic or anionic excess surface charge. PHAG were bound at the outermost layer of such PEM coatings utilizing electrostatic interaction forces. Branched poly(ethyleneimine) (PEI) and poly(acrylic acid) (PAA) as cationic and anionic PEL, respectively, and theEscherichia coli T4 bacteriophage (T4 PHAG) and the Staphylococcus aureus bacteriophage (S.a. PHAG) were used. At first, PEM of PEI/PAA were consecutively adsorbed from solutions at germanium model substrates with z = 4 and 5 adsorption steps providing PAA-terminated PEM-4 and PEI-terminated PEM-5, which were characterized by surface-sensitive in situ attenuated total reflection Fourier transform infrared spectroscopy. Second, both T4 and S.a. PHAG were bound to these PEM showing a higher bound amount at cationic PEM-5 compared to anionic PEM-4. Electrostatic interaction forces between anionic capsid proteins and respective PEM are suggested. Furthermore, scanning force microscopy revealed typical overall size (200–250 nm) and shape (head/tail) features of the bound PHAG and supported qualitatively the preference for cationic PEM-5 by number. Finally, PEM-4 and PEM-5 were deposited at standard agar plates, S.a. PHAG were bound to those PEM, and plaque assay was performed to check antibacterial properties. Thereby, coatings of PHAG/PEM-5 showed a higher antibacterial activity and PHAG/PEM-4 a lower one, which was evidenced by plaque formation testing. Conclusively, PHAG/PEM coatings are promising for the reduction of implant-associated infections at surgical implants and thus may replace or complement established coatings based on low molecular synthetic antibiotics

    Ultra deep sequencing of Listeria monocytogenes sRNA transcriptome revealed new antisense RNAs

    Get PDF
    Listeria monocytogenes, a gram-positive pathogen, and causative agent of listeriosis, has become a widely used model organism for intracellular infections. Recent studies have identified small non-coding RNAs (sRNAs) as important factors for regulating gene expression and pathogenicity of L. monocytogenes. Increased speed and reduced costs of high throughput sequencing (HTS) techniques have made RNA sequencing (RNA-Seq) the state-of-the-art method to study bacterial transcriptomes. We created a large transcriptome dataset of L. monocytogenes containing a total of 21 million reads, using the SOLiD sequencing technology. The dataset contained cDNA sequences generated from L. monocytogenes RNA collected under intracellular and extracellular condition and additionally was size fractioned into three different size ranges from 150 nt. We report here, the identification of nine new sRNAs candidates of L. monocytogenes and a reevaluation of known sRNAs of L. monocytogenes EGD-e. Automatic comparison to known sRNAs revealed a high recovery rate of 55%, which was increased to 90% by manual revision of the data. Moreover, thorough classification of known sRNAs shed further light on their possible biological functions. Interestingly among the newly identified sRNA candidates are antisense RNAs (asRNAs) associated to the housekeeping genes purA, fumC and pgi and potentially their regulation, emphasizing the significance of sRNAs for metabolic adaptation in L. monocytogenes

    Detection of very long antisense transcripts by whole transcriptome RNA-Seq analysis of Listeria monocytogenes by semiconductor sequencing technology

    Get PDF
    The Gram-positive bacterium Listeria monocytogenes is the causative agent of listeriosis, a severe food-borne infection characterised by abortion, septicaemia, or meningoencephalitis. L. monocytogenes causes outbreaks of febrile gastroenteritis and accounts for community-acquired bacterial meningitis in humans. Listeriosis has one of the highest mortality rates (up to 30%) of all food-borne infections. This human pathogenic bacterium is an important model organism for biomedical research to investigate cell-mediated immunity. L. monocytogenes is also one of the best characterised bacterial systems for the molecular analysis of intracellular parasitism. Recently several transcriptomic studies have also made the ubiquitous distributed bacterium as a model to understand mechanisms of gene regulation from the environment to the infected host on the level of mRNA and non-coding RNAs (ncRNAs). We have used semiconductor sequencing technology for RNA-seq to investigate the repertoire of listerial ncRNAs under extra- and intracellular growth conditions. Furthermore, we applied a new bioinformatic analysis pipeline for detection, comparative genomics and structural conservation to identify ncRNAs. With this work, in total, 741 ncRNA locations of potential ncRNA candidates are now known for L. monocytogenes, of which 611 ncRNA candidates were identified by RNA-seq. 441 transcribed ncRNAs have never been described before. Among these, we identified novel long non-coding antisense RNAs with a length of up to 5,400 nt e.g. opposite to genes coding for internalins, methylases or a high-affinity potassium uptake system, namely the kdpABC operon, which were confirmed by qRT-PCR analysis. RNA-seq, comparative genomics and structural conservation of L. monocytogenes ncRNAs illustrate that this human pathogen uses a large number and repertoire of ncRNA including novel long antisense RNAs, which could be important for intracellular survival within the infected eukaryotic host

    Rifampicin restores extracellular organic matrix formation and mineralization of osteoblasts after intracellular Staphylococcus aureus infection

    Get PDF
    Aims Bone regeneration during treatment of staphylococcal bone infection is challenging due to the ability of Staphylococcus aureus to invade and persist within osteoblasts. Here, we sought to determine whether the metabolic and extracellular organic matrix formation and mineralization ability of S. aureus-infected human osteoblasts can be restored after rifampicin (RMP) therapy. Methods The human osteoblast-like Saos-2 cells infected with S. aureus EDCC 5055 strain and treated with 8 µg/ml RMP underwent osteogenic stimulation for up to 21 days. Test groups were Saos-2 cells + S. aureus and Saos-2 cells + S. aureus + 8 µg/ml RMP, and control groups were uninfected untreated Saos-2 cells and uninfected Saos-2 cells + 8 µg/ml RMP. Results The S. aureus-infected osteoblasts showed a significant number of intracellular bacteria colonies and an unusual higher metabolic activity (p < 0.005) compared to uninfected osteoblasts. Treatment with 8 µg/ml RMP significantly eradicated intracellular bacteria and the metabolic activity was comparable to uninfected groups. The RMP-treated infected osteoblasts revealed a significantly reduced amount of mineralized extracellular matrix (ECM) at seven days osteogenesis relative to uninfected untreated osteoblasts (p = 0.007). Prolonged osteogenesis and RMP treatment at 21 days significantly improved the ECM mineralization level. Ultrastructural images of the mineralized RMP-treated infected osteoblasts revealed viable osteoblasts and densely distributed calcium crystal deposits within the extracellular organic matrix. The expression levels of prominent bone formation genes were comparable to the RMP-treated uninfected osteoblasts. Conclusion Intracellular S. aureus infection impaired osteoblast metabolism and function. However, treatment with low dosage of RMP eradicated the intracellular S. aureus, enabling extracellular organic matrix formation and mineralization of osteoblasts at later stage

    A detailed view of the intracellular transcriptome of Listeria monocytogenes in murine macrophages using RNA-seq

    Get PDF
    Listeria monocytogenes is a bacterial pathogen and causative agent for the foodborne infection listeriosis, which is mainly a threat for pregnant, elderly or immunocompromised individuals. Due to its ability to invade and colonize diverse eukaryotic cell types including cells from invertebrates, L. monocytogenes has become a well-established model organism for intracellular growth. Almost ten years ago, we and others presented the first whole-genome microarray-based intracellular transcriptome of L. monocytogenes. With the advent of newer technologies addressing transcriptomes in greater detail, we revisit this work, and analyze the intracellular transcriptome of L. monocytogenes during growth in murine macrophages using a deep sequencing based approach.We detected 656 differentially expressed genes of which 367 were upregulated during intracellular growth in macrophages compared to extracellular growth in BHI. This study confirmed ~64% of all regulated genes previously identified by microarray analysis. Many of the regulated genes that were detected in the current study involve transporters for various metals, ions as well as complex sugars such as mannose. We also report changes in antisense transcription, especially upregulations during intracellular bacterial survival. A notable finding was the detection of regulatory changes for a subset of temperate A118-like prophage genes, thereby shedding light on the transcriptional profile of this bacteriophage during intracellular growth. In total, our study provides an updated genome-wide view of the transcriptional landscape of L. monocytogenes during intracellular growth and represents a rich resource for future detailed analysis

    Microbiological and ultrastructural evaluation of bacteriophage 191219 against planktonic, intracellular and biofilm infection with Staphylococcus aureus

    Get PDF
    Infections of orthopaedic implants, such as fracture fixation devices and total-joint prostheses, are devastating complications. Staphylococcus aureus (S. aureus) is a predominant pathogen causing orthopaedic-implant biofilm infections that can also internalise and persist in osteoblasts, thus resisting antibiotic therapy. Bacteriophages are a promising alternative treatment approach. However, data on the activity of bacteriophages against S. aureus, especially during intracellular growth, and against in vivo biofilm formation on metals are scarce. Therefore, the present study evaluated the in vitro efficacy of S. aureus bacteriophage 191219, alone as well as in combination with gentamicin and rifampicin, to eradicate S. aureus strains in their planktonic stage, during biofilm formation and after internalisation into osteoblasts. Further, the invertebrate model organism Galleria mellonella was used to assess the activity of the bacteriophage against S. aureus biofilm on metal implants with and without antibiotics. Results demonstrated the in vitro efficacy of bacteriophage 191219 against planktonic S. aureus. The phage was also effective against in vitro S. aureus biofilm formation in a dose-dependent manner and against S. aureus internalised in an osteoblastic cell line. Transmission electron microscopy (TEM) analysis showed bacteriophages on S. aureus inside the osteoblasts, with the destruction of the intracellular bacteria and formation of new bacteriophages. For the Galleria mellonella infection model, single administration of phage 191219 failed to show an improvement in survival rate but appeared to show a not statistically significant enhanced effect with gentamicin or rifampicin. In summary, bacteriophages could be a potential adjuvant treatment strategy for patients with implant-associated biofilm infections

    Galleria mellonella as an alternative in vivo model to study bacterial biofilms on stainless steel and titanium implants

    Get PDF
    The purpose of this study was to establish an infection model of Galleria mellonella larvae as an alternative in vivo model for biofilm-associated infections on stainless steel and titanium implants. First, the model was established with bacteria-free implants to evaluate the biocompatibility of implants in the larvae. Titanium or stainless steel implants were implanted without any adverse effects over the entire observation period of 5 days compared to controls. Then, stainless steel and titanium implants pre-incubated with Staphylococcus aureus were implanted into the larvae to mimic biofilm-associated infection. For both materials, pre-incubation of the implant with S. aureus led to significantly reduced survival of the larvae compared to bacteria-free implants. Survival rates of the larvae could not be improved in this biofilm infection situation by the addition of gentamicin, whereas gentamicin could significantly improve the survival of the larvae in case of planktonic infection of the larvae with S. aureus without an implant, confirming the typical characteristics of reduced antibiotic susceptibility of biofilm infections. Additionally, biofilm formation and various stages of biofilm maturation were confirmed by surface electron microscopy and by measuring gene expression of biofilm-related genes with the pre-incubated implant, which showed strong biofilm formation and upregulation of autolysin (atl) and sarA genes. In conclusion, G. mellonella can be used as an alternative in vivo model to study biofilm-associated infections on stainless steel and titanium implants, which may help to reduce animal infection experiments with vertebrates in the future

    The clinical use of bone graft substitutes in orthopedic surgery in Germany—A 10‐years survey from 2008 to 2018 of 1,090,167 surgical interventions

    Get PDF
    Aim of the study was to evaluate (1) the overall use of bone graft substitutes, autografts and allografts, (2) of different types of bone graft substitutes (calcium sulfate, calcium phosphate, calcium phosphate ceramics or polymethyl methacrylate) and of different bone grafts (cancellous vs. cortical), and (3) the use of antibiotic-loading of bone graft substitutes in orthopedic surgery in Germany. Gross data were provided from the Federal Statistical Office of Germany and revealed an overall increase in bone defect reconstruction procedures using bone graft substitutes, autografts and allografts from 86,294 in 2008 to 99,863 cases in 2018 (+15.7%). The relative use of bone graft substitutes for these interventions strongly increased from 11.8% in 2008 (10,163 cases) to 23.9% in 2018 (23,838 cases) with an increase of +134.4%. Furthermore, antibiotic-loaded bone graft substitutes were implanted more frequently with an overall increase of +194% (2008: n = 2,657; 2018: n = 7,811). The work shows an increasing use of bone graft substitutes and antibiotic-loaded bone graft substitutes over the last 10 years in Germany

    Staphylococcus aureus From an Acute Fracture-related Infection Displays Important Bacteriological and Histopathologic Differences From a Chronic Equivalent in a Murine Bone Infection Model

    Get PDF
    Background Staphylococcus aureus is the leading pathogen in fracture-related infection. Previous in vitro experiments, in vivo testing in wax moth larvae, and genomic analysis of clinical S. aureus isolates from fracture-related infection identified low-virulence (Lo-SA5464) and high-virulence (Hi-SA5458) strains. These findings correlated with acute fracture-related infection induced by Hi-SA5458, whereas Lo-SA5464 caused a chronic fracture-related infection in its human host. However, it remains unclear whether and to what extent the causative pathogen is attributable to these disparities in fracture-related infections. Question/purpose Are there differences in the course of infection when comparing these two different clinical isolates in a murine fracture-related infection model, as measured by (1) clinical observations of weight loss, (2) quantitative bacteriology, (3) immune response, and (4) radiographic and histopathologic morphology? Methods Twenty-five (including one replacement animal) female (no sex-specific influences expected), skeletally mature C57Bl/6N inbred mice between 20 and 28 weeks old underwent femoral osteotomy stabilized by titanium locking plates. Fracture-related infection was established by inoculation of high-virulence S. aureus EDCC 5458 (Hi-SA5458) or low-virulence S. aureus EDCC 5464 (Lo-SA5464) in the fracture gap. Each of these groups consisted of 12 randomly assigned animals. Mice were euthanized 4 and 14 days postsurgery, resulting in six animals per group and timepoint. The severity and progression of infection were assessed in terms of clinical observation of weight loss, quantitative bacteriology, quantitative serum cytokine levels, qualitative analysis of postmortem radiographs, and semiquantitative histopathologic evaluation. Results For clinical observations of weight change, no differences were seen at Day 4 between Hi-SA5458- and Lo-SA5464-infected animals (mean -0.6 ± 0.1 grams versus -0.8 ± 0.2 grams, mean difference -0.2 grams [95% CI -0.8 to 0.5 grams]; p =0.43), while at 14 days, the Hi-SA5458 group lost more weight than the Lo-SA5464 group (mean -1.55 ± 0.2 grams versus -0.8 ± 0.3 grams; mean difference 0.7 grams [95% CI 0.2 to 1.3 grams]; p = 0.02). Quantitative bacteriological results 4 days postoperatively revealed a higher bacterial load in soft tissue samples in Hi-SA5458-infected animals than in the Lo-SA5464-infected cohort (median 6.8 x 107 colony-forming units [CFU]/g, range 2.2 x 107 to 2.1 x 109 CFU/g versus median 6.0 x 106 CFU/g, range 1.8 x 105 to 1.3 x 108 CFU/g; difference of medians 6.2 x 107 CFU/g; p = 0.03). At both timepoints, mice infected with the Hi-SA5458 strain also displayed higher proportions of bacterial dissemination into organs than Lo-SA5464-infected animals (67% [24 of 36 organs] versus 14% [five of 36 organs]; OR 12.0 [95% CI 3.7 to 36]; p < 0.001). This was accompanied by a pronounced proinflammatory response on Day 14, indicated by increased serum cytokine levels of interleukin-1β (mean 9.0 ± 2.2 pg/mL versus 5.3 ± 1.5 pg/mL; mean difference 3.6 pg/mL [95% CI 2.0 to 5.2 pg/mL]; p < 0.001), IL-6 (mean 458.6 ± 370.7 pg/mL versus 201.0 ±89.6 pg/mL; mean difference 257.6 pg/mL [95% CI 68.7 to 446.5 pg/mL]; p = 0.006), IL-10 (mean 15.9 ± 3.5 pg/mL versus 9.9 ± 1.0 pg/mL; mean difference 6.0 pg/mL [95% CI 3.2 to 8.7 pg/mL]; p < 0.001), and interferon-γ (mean 2.7 ± 1.9 pg/mL versus 0.8 ± 0.3 pg/mL; mean difference 1.8 pg/mL [95% CI 0.5 to 3.1 pg/mL]; p = 0.002) in Hi-SA5458-infected compared with Lo-SA5464-infected animals. The semiquantitative histopathologic assessment on Day 4 revealed higher grades of granulocyte infiltration in Hi-SA5458-infected animals (mean grade 2.5 ± 1.0) than in Lo-SA5464-infected animals (mean grade 1.8 ± 1.4; mean difference 0.7 [95% CI 0.001 to 1.4]; p = 0.0498). On Day 14, bone healing at the fracture site was present to a higher extent in Lo-SA5464-infected animals than in Hi-SA5458-infected animals (mean grade 0.2 ± 0.4 versus 1.8 ± 1.2; mean difference -1.6 [95% CI -2.8 to -0.5]; p = 0.008). Conclusion Similar to septic infection in a human host, infection with Hi-SA5458 in this murine model was characterized by a higher bacterial load, more-pronounced systemic dissemination, and stronger systemic and local inflammation. Thus, there is strong support for the idea that pathogenic virulence plays a crucial role in fracture-related infections. To confirm our observations, future studies should focus on characterizing S. aureus virulence at the genomic and transcriptomic levels in more clinical isolates and patients. Comparing knockout and wildtype strains in vitro and in vivo, including the S. aureus strains studied, could confirm our findings and identify the genomic features responsible for S. aureus virulence in fracture-related infections. Clinical Relevance For translational use, virulence profiles of S. aureus may be useful in guiding treatment decisions in the future. Once specific virulence targets are identified, one approach to fracture-related infections with high-virulence strains might be the development of antivirulence agents, particularly to treat or prevent septic dissemination. For fracture-related infections with low virulence, prolonged antimicrobial therapy or exchange of an indwelling implant might be beneficial owing to slower growth and persistence capacity
    corecore