100 research outputs found
Age effects in identifying and localising dichotic stimuli: a corpus callosum deficit?
In the present study, dichotic listening performance of 31 older adults was compared with performance of 25 younger adults under free and focussed attention conditions. In addition to an age-related general decrease in performance, we observed in the focussed attention condition increased asymmetry in the elderly group: the decrease of recall performance was stronger for the left ear (LE) than for the right ear (RE), while the increase of localisation errors was greater for the RE than for the LE. Identifying and localising digits appear to be different processes mediated predominantly by the left and right hemisphere, respectively. Since age-related reduced performance is strongest for the ear ipsilateral to the hemisphere dominant to that particular function, these findings may be ascribed to decline of corpus callosum functioning resulting in decreased interhemispheric interaction rather than to a selective decline of right hemisphere functions
Attention modulates hemispheric differences in functional connectivity: Evidence from MEG recordings
The present study examined intrahemispheric functional connectivity during rest and dichotic listening in 8 male and 9 female healthy young adults measured with magnetoencephalography (MEG). Generalized synchronization within the separate hemispheres was estimated by means of the synchronization likelihood that is sensitive to linear as well as non-linear coupling of MEG signals. We found higher functional intrahemispheric connectivity of frontal and temporal areas within the right as compared to the left hemisphere in the lower and higher theta band during rest, and in the lower theta band during dichotic listening. In addition, higher synchronization in the lower theta band correlated with better task performance. In the upper alpha band, hemispheric differences in intrahemispheric connectivity of the frontal regions were found to be modulated by focused attention instructions. That is, attention to the right ear exaggerates the pattern of higher synchroniza
From batch to continuous : Au-catalysed oxidation of d-galacturonic acid in a packed bed plug flow reactor under alkaline conditions
Currently biomass based conversions are often performed in batch reactors. From an operational and economic point of view the use of a continuous plug flow reactor is preferred. Here we make a back to back comparison of the use of a batch and plug flow reactor for the oxidation of (sodium)-galacturonate to (disodium)-galactarate using a heterogeneous Au-catalyst. We will show that the use of a three phase plug flow reactor results in enhanced O2 mass transfer which resulted in a 10-40 fold increase in productivity (up to 2.2 ton m-3 h-1). However, the product selectivity slightly dropped from >99 mol% in batch (controlled pH) to 94 mol% in packed bed (uncontrolled pH). Both reactors suffer from the low solubility of the reaction product. We will show that this solubility is the most significant challenge for performing this oxidation on industrial scale.</p
Autosomal recessive cerebellar ataxia caused by mutations in the PEX2 gene
<p>Abstract</p> <p>Objective</p> <p>To expand the spectrum of genetic causes of autosomal recessive cerebellar ataxia (ARCA).</p> <p>Case report</p> <p>Two brothers are described who developed progressive cerebellar ataxia at 3 1/2 and 18 years, respectively. After ruling out known common genetic causes of ARCA, analysis of blood peroxisomal markers strongly suggested a peroxisomal biogenesis disorder. Sequencing of candidate <it>PEX </it>genes revealed a homozygous c.865_866insA mutation in the <it>PEX2 </it>gene leading to a frameshift 17 codons upstream of the stop codon. <it>PEX </it>gene mutations usually result in a severe neurological phenotype (Zellweger spectrum disorders).</p> <p>Conclusions</p> <p>Genetic screening of PEX2 and other PEX genes involved in peroxisomal biogenesis is warranted in children and adults with ARCA.</p
Adapting effects of emotional expression in anxiety: evidence for an enhanced late positive potential
An adaptation paradigm was used to investigate the influence of a previously experienced visual context on the interpretation of ambiguous emotional expressions. Affective classification of fear-neutral ambiguous expressions was performed following repeated exposure to either fearful or neutral faces. There was a shift in the behavioural classification of morphs towards ‘fear’ following adaptation to neutral compared to adaptation to fear with a non-significant trend towards the high anxiety group compared to the low being more influenced by the context. The event-related potential (ERP) data revealed a more pronounced late positive potential (LPP), beginning at ~400 ms post-stimulus onset, in the high but not the low anxiety group following adaptation to neutral compared to fear. In addition, as the size of the behavioural adaptation increased there was a linear increase in the magnitude of the late-LPP. However, context-sensitivity effects are not restricted to trait anxiety, with similar effects observed with state anxiety and depression. These data support the proposal that negative moods are associated with increased sensitivity to visual contextual influences from top-down elaborative modulations, as reflected in an enhanced late positive potential deflection
Identification of a Novel Risk Locus for Multiple Sclerosis at 13q31.3 by a Pooled Genome-Wide Scan of 500,000 Single Nucleotide Polymorphisms
Multiple sclerosis is a chronic inflammatory demyelinating disease of the central nervous system with an important genetic component and strongest association driven by the HLA genes. We performed a pooling-based genome-wide association study of 500,000 SNPs in order to find new loci associated with the disease. After applying several criteria, 320 SNPs were selected from the microarrays and individually genotyped in a first and independent Spanish Caucasian replication cohort. The 8 most significant SNPs validated in this cohort were also genotyped in a second US Caucasian replication cohort for confirmation. The most significant association was obtained for SNP rs3129934, which neighbors the HLA-DRB/DQA loci and validates our pooling-based strategy. The second strongest association signal was found for SNP rs1327328, which resides in an unannotated region of chromosome 13 but is in linkage disequilibrium with nearby functional elements that may play important roles in disease susceptibility. This region of chromosome 13 has not been previously identified in MS linkage genome screens and represents a novel risk locus for the disease
Objective and Self-Rated Sedentary Time and Indicators of Metabolic Health in Dutch and Hungarian 10–12 Year Olds: The ENERGY-Project
Background: The association between objectively assessed sedentary time and metabolic risk factors in childhood have rarely been studied. Therefore, we examined the independent relationship between objectively assessed and self-rated sedentary time and indicators of metabolic health in Dutch and Hungarian 10–12 year olds. Methodology/Principal Findings: We performed a cross-sectional survey in primary schools. Participants were Dutch and Hungarian girls (n = 73, aged 12.260.6 years, 18 % overweight/obese) and boys (n = 69, aged 12.260.7 years, 38% overweight/obese). Sedentary time and physical activity were assessed by the Actigraph accelerometer. TV and PC time were assessed by self-report. Adiposity indicators included body weight, height, and waist circumference (WC). Fasting plasma glucose, C-peptide, total cholesterol, low density lipoprotein cholesterol, high density lipoprotein cholesterol, and triglycerides were determined in capillary blood and summed into a metabolic risk score. Linear regression analyses were adjusted for physical activity, number of sedentary bouts and WC. Children spent on average 7.6 hours of their daily waking time in sedentary behavior and self-reported 116664 min/day watching TV and 85657 min/day using the computer. Comparing the 1 st and 4 th quartile of objectively assessed sedentary time, C-Peptide levels, WC and BMI were significantly higher in the most sedentary quartile, while the difference in metabolic risk score was borderline significant (p = 0.09). Comparing the 1 st and 4 th quartile of TV time, BMI was significantly higher in the most sedentary quartile, while th
The influence of low-grade glioma on resting state oscillatory brain activity: a magnetoencephalography study
Purpose In the present MEG-study, power spectral analysis of oscillatory brain activity was used to compare resting state brain activity in both low-grade glioma (LGG) patients and healthy controls. We hypothesized that LGG patients show local as well as diffuse slowing of resting state brain activity compared to healthy controls and that particularly global slowing correlates with neurocognitive dysfunction. Patient and methods Resting state MEG recordings were obtained from 17 LGG patients and 17 age-, sex-, and education-matched healthy controls. Relative spectral power was calculated in the delta, theta, upper and lower alpha, beta, and gamma frequency band. A battery of standardized neurocognitive tests measuring 6 neurocognitive domains was administered. Results LGG patients showed a slowing of the resting state brain activity when compared to healthy controls. Decrease in relative power was mainly found in the gamma frequency band in the bilateral frontocentral MEG regions, whereas an increase in relative power was found in the theta frequency band in the left parietal region. An increase of the relative power in the theta and lower alpha band correlated with impaired executive functioning, information processing, and working memory. Conclusion LGG patients are characterized by global slowing of their resting state brain activity and this slowing phenomenon correlates with the observed neurocognitive deficits
- …