5,711 research outputs found

    XMM-Newton and INTEGRAL analysis of the Supergiant Fast X-ray Transient IGR J17354-3255

    Get PDF
    We present the results of combined INTEGRAL and XMM-Newton observations of the supergiant fast X-ray transient (SFXT) IGR J17354-3255. Three XMM-Newton observations of lengths 33.4 ks, 32.5 ks and 21.9 ks were undertaken, the first an initial pointing to identify the correct source in the field of view and the latter two performed around periastron. Simultaneous INTEGRAL observations across 66%\sim66\% of the orbital cycle were analysed but the source was neither detected by IBIS/ISGRI nor by JEM-X. The XMM-Newton light curves display a range of moderately bright X-ray activity but there are no particularly strong flares or outbursts in any of the three observations. We show that the spectral shape measured by XMM-Newton can be fitted by a consistent model throughout the observation, suggesting that the observed flux variations are driven by obscuration from a wind of varying density rather than changes in accretion mode. The simultaneous INTEGRAL data rule out simple extrapolation of the simple powerlaw model beyond the XMM-Newton energy range.Comment: 13 pages, 9 figures, This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society Published by Oxford University Pres

    Interactive Debug of SoCs with Multiple Clocks

    Full text link

    Belgium

    Get PDF

    Hard X-ray techniques suitable for polymer experiments

    Get PDF
    Polymers have been studied since 1979 with 8-12 keV synchrotron radiation X-ray scattering methods and the number and sophistication of the experiments have rapidly grown ever since. More recently, new experimental techniques have been developed that use softer or harder X rays in less conventional ways. This article provides a brief overview of the possibilities of hard X-ray techniques and indicates some areas that might gain from further developments

    Evidence for a Low Bulk Crustal Density for Mars from Gravity and Topography

    Get PDF
    Knowledge of the average density of the crust of a planet is important in determining its interior structure. The combination of high-resolution gravity and topography data has yielded a low density for the Moons crust, yet for other terrestrial planets the resolution of the gravity field models has hampered reasonable estimates. By using well-chosen constraints derived from topography during gravity field model determination using satellite tracking data, we show that we can robustly and independently determine the average bulk crustal density directly from the tracking data, using the admittance between topography and imperfect gravity. We find a low average bulk crustal density for Mars, 2582 209 kgm3. This bulk crustal density is lower than that assumed until now. Densities for volcanic complexes are higher, consistent with earlier estimates, implying large lateral variations in crustal density. In addition, we find indications that the crustal density increases with depth

    New insights on accretion in Supergiant Fast X-ray Transients from XMM-Newton and INTEGRAL observations of IGR J17544-2619

    Full text link
    XMM-Newton observations of the supergiant fast X-ray transient IGR ~J17544-2619 are reported and placed in the context of an analysis of archival INTEGRAL/IBIS data that provides a refined estimate of the orbital period at 4.9272±\pm0.0004 days. A complete outburst history across the INTEGRAL mission is reported. Although the new XMM-Newton observations (each lasting \sim15 ks) targeted the peak flux in the phase-folded hard X-ray light curve of IGR ~J17544-2619, no bright outbursts were observed, the source spending the majority of the exposure at intermediate luminosities of the order of several 1033^{33}\,erg\,s1^{-1} (0.5\,-\,10\,keV) and displaying only low level flickering activity. For the final portion of the exposure, the luminosity of IGR ~J17544-2619 dropped to \sim4×\times1032^{32}\,erg\,s1^{-1} (0.5 - 10 keV), comparable with the lowest luminosities ever detected from this source, despite the observations being taken near to periastron. We consider the possible orbital geometry of IGR ~J17544-2619 and the implications for the nature of the mass transfer and accretion mechanisms for both IGR ~J17544-2619 and the SFXT population. We conclude that accretion under the `quasi-spherical accretion' model provides a good description of the behaviour of IGR ~J17544-2619, and suggest an additional mechanism for generating outbursts based upon the mass accumulation rate in the hot shell (atmosphere) that forms around the NS under the quasi-spherical formulation. Hence we hope to aid in explaining the varied outburst behaviours observed across the SFXT population with a consistent underlying physical model.Comment: 12 pages, 5 figures, accepted for publication in MNRA

    A GPU-accelerated real-time NLMeans algorithm for denoising color video sequences

    Get PDF
    Abstract. The NLMeans filter, originally proposed by Buades et al., is a very popular filter for the removal of white Gaussian noise, due to its simplicity and excellent performance. The strength of this filter lies in exploiting the repetitive character of structures in images. However, to fully take advantage of the repetitivity a computationally extensive search for similar candidate blocks is indispensable. In previous work, we presented a number of algorithmic acceleration techniques for the NLMeans filter for still grayscale images. In this paper, we go one step further and incorporate both temporal information and color information into the NLMeans algorithm, in order to restore video sequences. Starting from our algorithmic acceleration techniques, we investigate how the NLMeans algorithm can be easily mapped onto recent parallel computing architectures. In particular, we consider the graphical processing unit (GPU), which is available on most recent computers. Our developments lead to a high-quality denoising filter that can process DVD-resolution video sequences in real-time on a mid-range GPU

    Estimation of crust and lithospheric properties for Mercury from high-resolution gravity and topography

    Get PDF
    We have analyzed the entire set of radiometric tracking data from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission. This analysis employed a method where standard Doppler tracking data were transformed into line-of-sight accelerations. These accelerations have greater sensitivity to small-scale features than standard Doppler. We estimated a gravity model expressed in spherical harmonics to degree and order 180 and showed that this model is improved, as it has increased correlations with topography in areas where tracking data were collected when the spacecraft altitude was low. The new model was used in an analysis of the localized admittance between gravity and topography to determine properties of Mercury’s lithosphere. Four areas with high correlations between gravity and topography were selected. These areas represent different terrain types: the high-Mg region, the Strindberg crater plus some lobate scarps, heavily cratered terrain, and smooth plains. We employed a Markov Chain Monte Carlo method to estimate crustal density, load density, crustal thickness, elastic thickness, load depth, and a load parameter that describes the ratio between surface and depth loading. We find densities around 2600 kg m−3 for three of the areas, with the density for the fourth area, the northern rise, being higher. The elastic thickness is generally low, between 11 and 30 km
    corecore