142 research outputs found

    The case for inflow of the broad-line region of active galactic nuclei

    Full text link
    The high-ionization lines of the broad-line region (BLR) of thermal active galactic nuclei (AGNs) show blueshifts of a few hundred km/s to several thousand km/sec with respect to the low-ionization lines. This has long been thought to be due to the high-ionization lines of the BLR arising in a wind of which the far side of the outflow is blocked from our view by the accretion disc. Evidence for and against the disc-wind model is discussed. The biggest problem for the model is that velocity-resolved reverberation mapping repeatedly fails to show the expected kinematic signature of outflow of the BLR. The disc-wind model also cannot readily reproduce the red side of the line profiles of high-ionization lines. The rapidly falling density in an outflow makes it difficult to obtain high equivalent widths. We point out a number of major problems with associating the BLR with the outflows producing broad absorption lines. An explanation which avoids all these problems and satisfies the constraints of both the line profiles and velocity-resolved reverberation-mapping is a model in which the blueshifting is due to scattering off material spiraling inwards with an inflow velocity of half the velocity of the blueshifting. We discuss how recent reverberation mapping results are consistent with the scattering-plus-inflow model but do not support a disc-wind model. We propose that the anti-correlation of the apparent redshifting of Hβ\beta with the blueshifting of CIV is a consequence of contamination of the red wings of Hβ\beta by the broad wings of [O III].Comment: 15 pages, 15 figures. To appear in special issue of Astrophysics and Space Science, "Spectral Line Shapes in Astrophysics

    Modeling the Polarization of Dusty Scattering Cones in Active Galactic Nuclei

    Get PDF
    We have used the STOKES radiative transfer code, to model polarization induced by dust scattering in the polar regions of Active Galactic Nuclei (AGN). We discuss the wavelength-dependence of the spectral intensity and polarization over the optical/UV range at different viewing angles for two different types of dust: a Galactic dust model, and a dust model inferred from extinction properties of AGN

    The puzzle of the soft X-ray excess in AGN: absorption or reflection?

    Full text link
    The 2-10 keV continuum of AGN is generally well represented by a single power law. However, at smaller energies the continuum displays an excess with respect to the extrapolation of this power law, called the ''soft X-ray excess''. Until now this soft X-ray excess was attributed, either to reflection of the hard X-ray source by the accretion disk, or to the presence of an additional comptonizing medium, giving a steep spectrum. An alternative solution proposed by Gierlinski and Done (2004) is that a single power law well represents both the soft and the hard X-ray emission and the impression of the soft X-ray excess is due to absorption of a primary power law by a relativistic wind. We examine the advantages and drawbacks of reflection versus absorption models, and we conclude that the observed spectra can be well modeled, either by absorption (for a strong excess), or by reflection (for a weak excess). However the physical conditions required by the absorption models do not seem very realistic: we would prefer an ''hybrid model''.Comment: 4 pages, 3 figures, abstracts SF2A-2005, published by EDP-Sciences Conference Serie

    Polarised epithelial monolayers of the gastric mucosa reveal insights into mucosal homeostasis and defence against infection

    No full text
    Objective Helicobacter pylori causes life-long colonisation of the gastric mucosa, leading to chronic inflammation with increased risk of gastric cancer. Research on the pathogenesis of this infection would strongly benefit from an authentic human in vitro model. Design Antrum-derived gastric glands from surgery specimens served to establish polarised epithelial monolayers via a transient air–liquid interface culture stage to study cross-talk with H. pylori and the adjacent stroma. Results The resulting ‘mucosoid cultures’, so named because they recapitulate key characteristics of the gastric mucosa, represent normal stem cell-driven cultures that can be passaged for months. These highly polarised columnar epithelial layers encompass the various gastric antral cell types and secrete mucus at the apical surface. By default, they differentiate towards a foveolar, MUC5AC-producing phenotype, whereas Wnt signalling stimulates proliferation of MUC6-producing cells and preserves stemness—reminiscent of the gland base. Stromal cells from the lamina propria secrete Wnt inhibitors, antagonising stem-cell niche signalling and inducing differentiation. On infection with H. pylori, a strong inflammatory response is induced preferentially in the undifferentiated basal cell phenotype. Infection of cultures for several weeks produces foci of viable bacteria and a persistent inflammatory condition, while the secreted mucus establishes a barrier that only few bacteria manage to overcome. Conclusion Gastric mucosoid cultures faithfully reproduce the features of normal human gastric epithelium, enabling new approaches for investigating the interaction of H. pylori with the epithelial surface and the cross-talk with the basolateral stromal compartment. Our observations provide striking insights in the regulatory circuits of inflammation and defence.</p

    Hemocytes are essential for Drosophila melanogaster post-embryonic development, independent of control of the microbiota.

    Get PDF
    Proven roles for hemocytes (blood cells) have expanded beyond the control of infections in Drosophila. Despite this, the crucial role of hemocytes in post-embryonic development has long thought to be limited to control of microorganisms during metamorphosis. This has previously been shown by rescue of adult development in hemocyte-ablation models under germ-free conditions. Here, we show that hemocytes have an essential role in post-embryonic development beyond their ability to control the microbiota. Using a newly generated strong hemocyte-specific driver line for the GAL4/UAS system, we show that specific ablation of hemocytes is early pupal lethal, even under axenic conditions. Genetic rescue experiments prove that this is a hemocyte-specific phenomenon. RNA-seq data suggests that dysregulation of the midgut is a prominent consequence of hemocyte ablation in larval stages, resulting in reduced gut lengths. Dissection suggests that multiple processes may be affected during metamorphosis. We believe this previously unreported role for hemocytes during metamorphosis is a major finding for the field
    • …
    corecore