442 research outputs found

    Separation of river network–scale nitrogen removal among the main channel and two transient storage compartments

    Get PDF
    Transient storage (TS) zones are important areas of dissolved inorganic nitrogen (DIN) processing in rivers. We assessed sensitivities regarding the relative impact that the main channel (MC), surface TS (STS), and hyporheic TS (HTS) have on network denitrification using a model applied to the Ipswich River in Massachusetts, United States. STS and HTS connectivity and size were parameterized using the results of in situ solute tracer studies in first‐ through fifth‐order reaches. DIN removal was simulated in all compartments for every river grid cell using reactivity derived from Lotic Intersite Nitrogen Experiment (LINX2) studies, hydraulic characteristics, and simulated discharge. Model results suggest that although MC‐to‐STS connectivity is greater than MC‐to‐HTS connectivity at the reach scale, at basin scales, there is a high probability of water entering the HTS at some point along its flow path through the river network. Assuming our best empirical estimates of hydraulic parameters and reactivity, the MC, HTS, and STS removed approximately 38%, 21%, and 14% of total DIN inputs during a typical base flow period, respectively. There is considerable uncertainty in many of the parameters, particularly the estimates of reaction rates in the different compartments. Using sensitivity analyses, we found that the size of TS is more important for DIN removal processes than its connectivity with the MC when reactivity is low to moderate, whereas TS connectivity is more important when reaction rates are rapid. Our work suggests a network perspective is needed to understand how connectivity, residence times, and reactivity interact to influence DIN processing in hierarchical river systems

    Imaging Thermal Stratigraphy in Freshwater Lakes Using Georadar

    Get PDF
    Thermal stratification exerts significant control over biogeochemical processing in freshwater lakes. Thus, the temporal and spatial distribution of the thermal structure is an important component in understanding lake ecosystems. We present the first reported observations of lake thermal stratification from surface based georadar measurements acquired over two small freshwater lakes. This method is very useful because it can provide rapid acquisition of 2D or 3D lotic stratification

    Microbial community composition of transiently wetted Antarctic Dry Valley soils

    Get PDF
    During the summer months, wet (hyporheic) soils associated with ephemeral streams and lake edges in the Antarctic Dry Valleys (DVs) become hotspots of biological activity and are hypothesized to be an important source of carbon and nitrogen for arid DV soils. Recent research in the DV has focused on the geochemistry and microbial ecology of lakes and arid soils, with substantially less information being available on hyporheic soils. Here, we determined the unique properties of hyporheic microbial communities, resolved their relationship to environmental parameters and compared them to archetypal arid DV soils. Generally, pH increased and chlorophyll a concentrations decreased along transects from wet to arid soils (9.0 to ~7.0 for pH and ~0.8 to ~5 μg/cm3 for chlorophyll a, respectively). Soil water content decreased to below ~3% in the arid soils. Community fingerprinting-based principle component analyses revealed that bacterial communities formed distinct clusters specific to arid and wet soils; however, eukaryotic communities that clustered together did not have similar soil moisture content nor did they group together based on sampling location. Collectively, rRNA pyrosequencing indicated a considerably higher abundance of Cyanobacteria in wet soils and a higher abundance of Acidobacterial, Actinobacterial, Deinococcus/Thermus, Bacteroidetes, Firmicutes, Gemmatimonadetes, Nitrospira, and Planctomycetes in arid soils. The two most significant differences at the genus level were Gillisia signatures present in arid soils and chloroplast signatures related to Streptophyta that were common in wet soils. Fungal dominance was observed in arid soils and Viridiplantae were more common in wet soils. This research represents an in-depth characterization of microbial communities inhabiting wet DV soils. Results indicate that the repeated wetting of hyporheic zones has a profound impact on the bacterial and eukaryotic communities inhabiting in these areas

    Transient Storage as a Function of Geomorphology, Discharge, and Permafrost Active Layer Conditions in Arctic Tundra Streams

    Get PDF
    Transient storage of solutes in hyporheic zones or other slow-moving stream waters plays an important role in the biogeochemical processes of streams. While numerous studies have reported a wide range of parameter values from simulations of transient storage, little field work has been done to investigate the correlations between these parameters and shifts in surface and subsurface flow conditions. In this investigation we use the stream properties of the Arctic (namely, highly varied discharges, channel morphologies, and subchannel permafrost conditions) to isolate the effects of discharge, channel morphology, and potential size of the hyporheic zone on transient storage. We repeated stream tracer experiments in five morphologically diverse tundra streams in Arctic Alaska during the thaw season (May–August) of 2004 to assess transient storage and hydrologic characteristics. We compared transient storage model parameters to discharge (Q), the Darcy-Weisbach friction factor (f), and unit stream power (ω). Across all studied streams, permafrost active layer depths (i.e., the potential extent of the hyporheic zone) increased throughout the thaw season, and discharges and velocities varied dramatically with minimum ranges of eight-fold and four-fold, respectively. In all reaches the mean storage residence time (tstor) decreased exponentially with increasing Q, but did not clearly relate to permafrost active layer depths. Furthermore, we found that modeled transient storage metrics (i.e., tstor, storage zone exchange rate (αOTIS), and hydraulic retention (Rh)) correlated better with channel hydraulic descriptors such as f and ω than they did with Q or channel slope. Our results indicate that Q is the first-order control on transient storage dynamics of these streams, and that f and ω are two relatively simple measures of channel hydraulics that may be important metrics for predicting the response of transient storage to perturbations in discharge and morphology in a given stream

    Influence of Morphology and Permafrost Dynamics on Hyporheic Exchange in Arctic Headwater Streams under Warming Climate Conditions

    Get PDF
    We investigated surface-subsurface (hyporheic) exchange in two morphologically distinct arctic headwater streams experiencing warming (thawing) sub-channel conditions. Empirically parameterized and calibrated groundwater flow models were used to assess the influence of sub-channel thaw on hyporheic exchange. Average thaw depths were at least two-fold greater under the higher-energy, alluvial stream than under the lowenergy, peat-lined stream. Alluvial hyporheic exchange had shorter residence times and longer flowpaths that occurred across greater portions of the thawed sediments. For both reaches, the morphologic (longitudinal bed topography) and hydraulic conditions (surface and groundwater flow properties) set the potential for hyporheic flow. Simulations of deeper thaw, as predicted under a warming arctic climate, only influence hyporheic exchange until a threshold depth. This depth is primarily determined by the hydraulic head gradients imposed by the stream morphology. Therefore, arctic hyporheic exchange extent is likely to be independent of greater sub-stream thaw depths

    Comparison of Instantaneous and Constant-Rate Stream Tracer Experiments Through Parametric Analysis of Residence Time Distributions

    Get PDF
    Artificial tracers are frequently employed to characterize solute residence times in stream systems and infer the nature of water retention. When the duration of tracer application is different between experiments, tracer breakthrough curves at downstream locations are difficult to compare directly. We explore methods for deriving stream solute residence time distributions (RTD) from tracer test data, allowing direct, non-parametric comparison of results from experiments of different durations. Paired short- and long-duration field experiments were performed using instantaneous and constant-rate tracer releases, respectively. The experiments were conducted in two study reaches that were morphologically distinct in channel structure and substrate size. Frequency- and time domain deconvolution techniques were used to derive RTDs from the resulting tracer concentrations. Comparisons of results between experiments of different duration demonstrated few differences in hydrologic retention characteristics inferred from short- and long-term tracer tests. Because non-parametric RTD analysis does not presume any shape of the distribution, it is useful for comparisons across tracer experiments with variable inputs and for validations of fundamental transport model assumptions

    Hyporheic Exchange and Water Chemistry of Two Arctic Tundra Streams of Contrasting Geomorphology

    Get PDF
    The North Slope of Alaska’s Brooks Range is underlain by continuous permafrost, but an active layer of thawed sediments develops at the tundra surface and beneath streambeds during the summer, facilitating hyporheic exchange. Our goal was to understand how active layer extent and stream geomorphology influence hyporheic exchange and nutrient chemistry. We studied two arctic tundra streams of contrasting geomorphology: a high-gradient, alluvial stream with riffle-pool sequences and a low-gradient, peat-bottomed stream with large deep pools connected by deep runs. Hyporheic exchange occurred to ~50 cm beneath the alluvial streambed and to only ~15 cm beneath the peat streambed. The thaw bulb was deeper than the hyporheic exchange zone in both stream types. The hyporheic zone was a net source of ammonium and soluble reactive phosphorus in both stream types. The hyporheic zone was a net source of nitrate in the alluvial stream, but a net nitrate sink in the peat stream. The mass flux of nutrients regenerated from the hyporheic zones in these two streams was a small portion of the surface water mass flux. Although small, hyporheic sources of regenerated nutrients help maintain the in-stream nutrient balance. If future warming in the arctic increases the depth of the thaw bulb, it may not increase the vertical extent of hyporheic exchange. The greater impacts on annual contributions of hyporheic regeneration are likely to be due to longer thawed seasons, increased sediment temperatures or changes in geomorphology

    Glacial and periglacial floodplain sediments regulate hydrologic transfer of reactive iron to a high arctic fjord

    Get PDF
    The transport of reactive iron (i.e. colloidal and dissolved) by a glacier-fed stream system draining a high relief periglacial landscape in the high Arctic archipelago of Svalbard is described. A negative, non-linear relationship between discharge and iron concentration is found, indicative of increased iron acquisition along baseflow pathways. Because the glaciers are cold-based and there are no intra- or sub-permafrost groundwater springs, baseflow is principally supplied by the active layer and the colluvial and alluvial sediments in the lower valley. Collectively, these environments increase the flux of iron in the stream by 40% over a floodplain length of just 8km, resulting in 6kg Fe km-2a-1 of reactive iron export for a 20% glacierized watershed. We show that pyrite oxidation in shallow-groundwater flowpaths of the floodplain is the most important source of reactive iron, although it is far less influential in the upper parts of the catchment where other sources are significant (including ironstone and secondary oxide coatings). Microbial catalysis of the pyrite oxidation occurs in the floodplain, enabling rapid, hyporheic water exchange to enhance the iron fluxes at high discharge and cause the non-linear relationship between discharge and reactive iron concentrations. Furthermore, because the pyrite oxidation is tightly coupled to carbonate and silicate mineral weathering, other nutrients such as base cations and silica are also released to the stream system. Our work therefore shows that high Arctic floodplains should be regarded as critically important regulators of terrestrial nutrient fluxes to coastal ecosystems from glacial and periglacial sources

    Residence time distributions in surface transient storage zones in streams : estimation via signal deconvolution

    Get PDF
    Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Water Resources Research 47 (2011): W05509, doi:10.1029/2010WR009959.Little is known about the impact of surface transient storage (STS) zones on reach-scale transport and the fate of dissolved nutrients in streams. Exchange with these locations may influence the rates of nutrient cycling often observed in whole-stream tracer experiments, particularly because they are sites of organic matter collection and lower flow velocities than those observed in the thalweg. We performed a conservative stream tracer experiment (slug of dissolved NaCl) in the Ipswich River in northeastern Massachusetts and collected solute tracer data both in the thalweg and adjacent STS zones at three locations in a fifth-order reach. Tracer time series observed in STS zones are an aggregate of residence time distributions (RTDs) of the upstream transport to that point (RTDTHAL) and that of the temporary storage within these zones (RTDSTS). Here we demonstrate the separation of these two RTDs to determine the RTDSTS specifically. Total residence times for these individual STS zones range from 4.5 to 7.5 h, suggesting that these zones have the potential to host important biogeochemical transformations in stream systems. All of the RTDSTS show substantial deviations from the ideal prescribed by the two-state (mobile/immobile) mass transfer equations. The deviations indicate a model mismatch and that parameter estimation based on the mass transfer equations will yield misleading values.This research was funded by the National Science Foundation, grants DEB 06-14350 and EAR 07- 49035, and DOE grant DE-FG02-07ER15841
    corecore