387 research outputs found

    Rapid cell-surface prion protein conversion revealed using a novel cell system

    Get PDF
    Prion diseases are fatal neurodegenerative disorders with unique transmissible properties. The infectious and pathological agent is thought to be a misfolded conformer of the prion protein. Little is known about the initial events in prion infection because the infecting prion source has been immunologically indistinguishable from normal cellular prion protein (PrPC). Here we develop a unique cell system in which epitope-tagged PrPC is expressed in a PrP knockdown (KD) neuroblastoma cell line. The tagged PrPC, when expressed in our PrP-KD cells, supports prion replication with the production of bona fide epitope-tagged infectious misfolded PrP (PrPSc). Using this epitope-tagged PrPSc, we study the earliest events in cellular prion infection and PrP misfolding. We show that prion infection of cells is extremely rapid occurring within 1 min of prion exposure, and we demonstrate that the plasma membrane is the primary site of prion conversion

    FAN1 controls mismatch repair complex assembly via MLH1 retention to stabilize CAG repeat expansion in Huntington's disease

    Get PDF
    CAG repeat expansion in the HTT gene drives Huntington’s disease (HD) pathogenesis and is modulated by DNA damage repair pathways. In this context, the interaction between FAN1, a DNA-structure-specific nuclease, and MLH1, member of the DNA mismatch repair pathway (MMR), is not defined. Here, we identify a highly conserved SPYF motif at the N terminus of FAN1 that binds to MLH1. Our data support a model where FAN1 has two distinct functions to stabilize CAG repeats. On one hand, it binds MLH1 to restrict its recruitment by MSH3, thus inhibiting the assembly of a functional MMR complex that would otherwise promote CAG repeat expansion. On the other hand, it promotes accurate repair via its nuclease activity. These data highlight a potential avenue for HD therapeutics in attenuating somatic expansion

    FAN1 controls mismatch repair complex assembly via MLH1 retention to stabilize CAG repeat expansion in Huntington's disease.

    Get PDF
    CAG repeat expansion in the HTT gene drives Huntington's disease (HD) pathogenesis and is modulated by DNA damage repair pathways. In this context, the interaction between FAN1, a DNA-structure-specific nuclease, and MLH1, member of the DNA mismatch repair pathway (MMR), is not defined. Here, we identify a highly conserved SPYF motif at the N terminus of FAN1 that binds to MLH1. Our data support a model where FAN1 has two distinct functions to stabilize CAG repeats. On one hand, it binds MLH1 to restrict its recruitment by MSH3, thus inhibiting the assembly of a functional MMR complex that would otherwise promote CAG repeat expansion. On the other hand, it promotes accurate repair via its nuclease activity. These data highlight a potential avenue for HD therapeutics in attenuating somatic expansion

    Teleportation of a quantum state of a spatial mode with a single massive particle

    Full text link
    Mode entanglement exists naturally between regions of space in ultra-cold atomic gases. It has, however, been debated whether this type of entanglement is useful for quantum protocols. This is due to a particle number superselection rule that restricts the operations that can be performed on the modes. In this paper, we show how to exploit the mode entanglement of just a single particle for the teleportation of an unknown quantum state of a spatial mode. We detail how to overcome the superselection rule to create any initial quantum state and how to perform Bell state analysis on two of the modes. We show that two of the four Bell states can always be reliably distinguished, while the other two have to be grouped together due to an unsatisfied phase matching condition. The teleportation of an unknown state of a quantum mode thus only succeeds half of the time.Comment: 12 pages, 1 figure, this paper was presented at TQC 2010 and extends the work of Phys. Rev. Lett. 103, 200502 (2009

    Attitudes toward cost-conscious care among U.S. physicians and medical students: analysis of national cross-sectional survey data by age and stage of training

    Get PDF
    Abstract Background The success of initiatives intended to increase the value of health care depends, in part, on the degree to which cost-conscious care is endorsed by current and future physicians. This study aimed to first analyze attitudes of U.S. physicians by age and then compare the attitudes of physicians and medical students. Methods A paper survey was mailed in mid-2012 to 3897 practicing physicians randomly selected from the American Medical Association Masterfile. An electronic survey was sent in early 2015 to all 5,992 students at 10 U.S. medical schools. Survey items measured attitudes toward cost-conscious care and perceived responsibility for reducing healthcare costs. Physician responses were first compared across age groups (30–40 years, 41–50 years, 51–60 years, and > 60 years) and then compared to student responses using Chi square tests and logistic regression analyses (controlling for sex). Results A total of 2,556 physicians (65%) and 3395 students (57%) responded. Physician attitudes generally did not differ by age, but differed significantly from those of students. Specifically, students were more likely than physicians to agree that cost to society should be important in treatment decisions (p < 0.001) and that physicians should sometimes deny beneficial but costly services (p < 0.001). Students were less likely to agree that it is unfair to ask physicians to be cost-conscious while prioritizing patient welfare (p < 0.001). Compared to physicians, students assigned more responsibility for reducing healthcare costs to hospitals and health systems (p < 0.001) and less responsibility to lawyers (p < 0.001) and patients (p < 0.001). Nearly all significant differences persisted after controlling for sex and when only the youngest physicians were compared to students. Conclusions Physician attitudes toward cost-conscious care are similar across age groups. However, physician attitudes differ significantly from medical students, even among the youngest physicians most proximate to students in age. Medical student responses suggest they are more accepting of cost-conscious care than physicians and attribute more responsibility for reducing costs to organizations and systems rather than individuals. This may be due to the combined effects of generational differences, new medical school curricula, students’ relative inexperience providing cost-conscious care within complex healthcare systems, and the rapidly evolving U.S. healthcare system.https://deepblue.lib.umich.edu/bitstream/2027.42/146517/1/12909_2018_Article_1388.pd

    Psychiatry during the Nazi era: ethical lessons for the modern professional

    Get PDF
    For the first time in history, psychiatrists during the Nazi era sought to systematically exterminate their patients. However, little has been published from this dark period analyzing what may be learned for clinical and research psychiatry. At each stage in the murderous process lay a series of unethical and heinous practices, with many psychiatrists demonstrating a profound commitment to the atrocities, playing central, pivotal roles critical to the success of Nazi policy. Several misconceptions led to this misconduct, including allowing philosophical constructs to define clinical practice, focusing exclusively on preventative medicine, allowing political pressures to influence practice, blurring the roles of clinicians and researchers, and falsely believing that good science and good ethics always co-exist. Psychiatry during this period provides a most horrifying example of how science may be perverted by external forces. It thus becomes crucial to include the Nazi era psychiatry experience in ethics training as an example of proper practice gone awry

    Second law, entropy production, and reversibility in thermodynamics of information

    Full text link
    We present a pedagogical review of the fundamental concepts in thermodynamics of information, by focusing on the second law of thermodynamics and the entropy production. Especially, we discuss the relationship among thermodynamic reversibility, logical reversibility, and heat emission in the context of the Landauer principle and clarify that these three concepts are fundamentally distinct to each other. We also discuss thermodynamics of measurement and feedback control by Maxwell's demon. We clarify that the demon and the second law are indeed consistent in the measurement and the feedback processes individually, by including the mutual information to the entropy production.Comment: 43 pages, 10 figures. As a chapter of: G. Snider et al. (eds.), "Energy Limits in Computation: A Review of Landauer's Principle, Theory and Experiments

    Structural versus experienced complexity: a new perspective on the relationship between organizational complexity and innovation

    Get PDF
    In this paper, we explore the relationship between organizational complexity and firm-level innovation. We define and operationalize a new construct, experienced complexity, which is the extent to which the organizational environment makes it challenging for decision-makers to do their jobs effectively. We distinguish experienced complexity from structural complexity, which is the elements of the organization, such as the number of reporting lines or integrating mechanisms, that are deliberately put in place to help the organization deliver on its objectives, and we argue that structural complexity correlates positively with firm-level innovation while experienced complexity correlates negatively with innovation. Using a novel dataset combining survey and objective data on 209 large firms, we find support for our arguments

    Anderson localisation in spin chains for perfect state transfer

    Get PDF
    Abstract: Anderson localisation is an important phenomenon arising in many areas of physics, andhere we explore it in the context of quantum information devices. Finite dimensional spinchains have been demonstrated to be important devices for quantum information transport,and in particular can be engineered to allow for “perfect state transfer” (PST). Here wepresent extensive investigations of disordered PST spin chains, demonstrating spatiallocalisation and transport retardation effects, and relate these effects to conventionalAnderson localisation. We provide thresholds for Anderson localisation in these finitequantum information systems for both the spatial and the transport domains. Finally, weconsider the effect of disorder on the eigenstates and energy spectrum of our Hamiltonian,where results support our conclusions on the presence of Anderson localisation. Graphical abstract: [Figure not available: see fulltext.

    ReveaLLAGN 0: First Look at JWST MIRI data of Sombrero and NGC 1052

    Full text link
    We present the first results from the Revealing Low-Luminosity Active Galactic Nuclei (ReveaLLAGN) survey, a JWST survey of seven nearby LLAGN. We focus on two observations with the Mid-Infrared Instrument's (MIRI) Medium Resolution Spectrograph (MRS) of the nuclei of NGC 1052 and Sombrero (NGC 4594 / M104). We also compare these data to public JWST data of a higher-luminosity AGN, NGC 7319. JWST clearly resolves the AGN component even in Sombrero, the faintest target in our survey; the AGN components have very red spectra. We find that the emission-line widths in both NGC 1052 and Sombrero increase with increasing ionization potential, with FWHM > 1000 km/s for lines with ionization potential > 50 eV. These lines are also significantly blue-shifted in both LLAGN. The high ionization potential lines in NGC 7319 show neither broad widths or significant blue shifts. Many of the lower ionization potential emission lines in Sombrero show significant blue wings extending > 1000 km/s. These features and the emission-line maps in both galaxies are consistent with outflows along the jet direction. Sombrero has the lowest luminosity high-ionization potential lines ([Ne V] and [O IV]) ever measured in the mid-IR, but the relative strengths of these lines are consistent with higher luminosity AGN. On the other hand, the [Ne V] emission is much weaker relative to the [Ne III}] and [Ne II] lines of higher-luminosity AGN. These initial results show the great promise that JWST holds for identifying and studying the physical nature of LLAGN.Comment: Submitted to Ap
    corecore