171 research outputs found
Recommended from our members
Impression formation in asymmetrical power relationships :: does power corrupt absolutely?
Thesis (M.S.
Recommended from our members
One Complete and Seven Draft Genome Sequences of Subdivision 1 and 3 Acidobacteria Isolated from Soil.
We report eight genomes from representatives of the phylum Acidobacteria subdivisions 1 and 3, isolated from soils. The genome sizes range from 4.9 to 6.7 Mb. Genomic analysis reveals putative genes for low- and high-affinity respiratory oxygen reductases, high-affinity hydrogenases, and the capacity to use a diverse collection of carbohydrates
Efficacy of Leukemia Inhibitory Factor as a Therapeutic for Permanent Large Vessel Stroke Differs among Aged Male and Female Rats
Preclinical studies using rodent models of stroke have had difficulty in translating their results to human patients. One possible factor behind this inability is the lack of studies utilizing aged rodents of both sexes. Previously, this lab showed that leukemia inhibitory factor (LIF) promoted recovery after stroke through antioxidant enzyme upregulation. This study examined whether LIF promotes neuroprotection in aged rats of both sexes. LIF did not reduce tissue damage in aged animals, but LIF-treated female rats showed partial motor skill recovery. The LIF receptor (LIFR) showed membrane localization in young male and aged rats of both sexes after stroke. Although LIF increased neuronal LIFR expression in vitro, it did not increase LIFR in the aged brain. Levels of LIFR protein in brain tissue were significantly downregulated between young males and aged males/females at 72 h after stroke. These results demonstrated that low LIFR expression reduces the neuroprotective efficacy of LIF in aged rodents of both sexes. Furthermore, the ability of LIF to promote motor improvement is dependent upon sex in aged rodents
Early Acid/Base and Electrolyte Changes in Permanent Middle Cerebral Artery Occlusion: Aged Male and Female Rats
BACKGROUND: Early changes in acid/base and electrolyte concentrations could provide insights into the development of neuropathology at the onset of stroke. We evaluated associations between acid/base and electrolyte concentrations, and outcomes in permanent middle cerebral artery occlusion (pMCAO) model.
METHODS: 18-month-old male and female Sprague-Dawley rats underwent pMCAO. Pre-, post- (7 min after occlusion), and at 72 hr of pMCAO venous blood samples provided pH, carbon dioxide, oxygen, glucose, hematocrit, hemoglobin, and electrolyte values of ionized calcium, potassium, and sodium. Multiple linear regression determined predictors of infarct and edema volumes from these values, Kaplan-Meier curve analyzed morality between males and females at 72 hr, and a Cox regression model was used to determine predictors for mortality.
RESULTS: Analysis indicated significant differences in acid/base balance and electrolyte levels in aged rats not dependent on sex between the three time points in the pMCAO model. Changes in pH (from pre- to post and post- to 72 hr) and changes in sodium and ionized calcium (from post- to 72 hr) were predictors of infarct volume and edema volume, respectively. Cox Regression revealed there is a 3.25 times increased risk for mortality based on changes in bicarbonate (pre- to post-MCAO).
CONCLUSIONS: These early venous blood changes in acid/base balance and electrolytes can be used to predict stroke outcomes in our rat model of stroke. This study provides potential biomarkers to be examined in the human condition that could provide profound prognostic tools for stroke patients
Characterization of an Aggregated Three-Dimensional Cell Culture Model by Multimodal Mass Spectrometry Imaging
Mass spectrometry imaging (MSI) is an established analytical tool capable of defining and understanding complex tissues by determining the spatial distribution of biological molecules. Three-dimensional (3D) cell culture models mimic the pathophysiological environment of in vivo tumors and are rapidly emerging as a valuable research tool. Here, multimodal MSI techniques were employed to characterize a novel aggregated 3D lung adenocarcinoma model, developed by the group to mimic the in vivo tissue. Regions of tumor heterogeneity and the hypoxic microenvironment were observed based on the spatial distribution of a variety of endogenous molecules. Desorption electrospray ionization (DESI)-MSI defined regions of a hypoxic core and a proliferative outer layer from metabolite distribution. Targeted metabolites (e.g., lactate, glutamine, and citrate) were mapped to pathways of glycolysis and the TCA cycle demonstrating tumor metabolic behavior. The first application of imaging mass cytometry (IMC) with 3D cell culture enabled single-cell phenotyping at 1 μm spatial resolution. Protein markers of proliferation (Ki-67) and hypoxia (glucose transporter 1) defined metabolic signaling in the aggregoid model, which complemented the metabolite data. Laser ablation inductively coupled plasma (LA-ICP)-MSI analysis localized endogenous elements including magnesium and copper, further differentiating the hypoxia gradient and validating the protein expression. Obtaining a large amount of molecular information on a complementary nature enabled an in-depth understanding of the biological processes within the novel tumor model. Combining powerful imaging techniques to characterize the aggregated 3D culture highlighted a future methodology with potential applications in cancer research and drug development
Preliminary Evidence of the Association between Time on Buprenorphine and Cognitive Performance among Individuals with Opioid Use Disorder Maintained on Buprenorphine: A Pilot Study
People on buprenorphine maintenance treatment (BMT) commonly present cognitive deficits that have been associated with illicit drug use and dropout from buprenorphine treatment. This study has compared cognitive responses to the Stroop Task and the Continuous Performance Task (CPT) among individuals on BMT, with recent drug use, and healthy controls and explored the associations between cognitive responses and drug use, craving, and buprenorphine use among participants on BMT. The participants were 16 individuals on BMT and 23 healthy controls. All participants completed a 60 min laboratory session in which they completed the Stroop Task and the CPT, a saliva drug test, a brief clinical history that collected substance-use- and treatment-related information, and the Opioid Craving Scale. The results showed that the BMT participants presented more commission errors (MBMT participants = 2.49; Mhealthy controls = 1.38; p = 0.048) and longer reaction times (MBMT participants = 798.09; Mhealthy controls = 699.09; p = 0.047) in the Stroop Task than did the healthy controls. More days on buprenorphine were negatively associated with reaction time in the CPT (−0.52) and the number of commission errors (−0.53), simple reaction time (−0.54), and reaction time correct (−0.57) in the Stroop Task. Neither drug use nor craving was significantly associated with the results for the cognitive tasks. Relative to the control participants, the BMT individuals performed worse in terms of longer reaction times and more commission errors in the Stroop Task. Within the BMT participants, longer times on buprenorphine were associated with better cognitive results in terms of faster reaction times for both tasks and lower commission errors for the Stroop Task
Mobility and Cognition in Seniors. Report from the 2008 Institute of Aging (CIHR) Mobility and Cognition Workshop
Background
The annual Scientific Meeting of the Canadian Association on Gerontology was held on October 24 and 25, 2008 in London, Ontario. Prior to the annual meeting, mobility and cognition experts met on October 23, 2008 to engage in a pre-conference workshop.
Methods
Discussions during the workshop addressed novel areas of research and knowledge and research gaps pertaining to the interaction between mobility and cognition in seniors.
Results
Workshop presenters moved from the neuromuscular, biomechanics, and neurology of gait impairments, and falls through the role of cognition and mood on mobility regulation to the whole person in the environment. Research gaps were identified.
Conclusions
Despite a consensus that mobility and cognition are increasingly correlated as people age, several gaps in our understanding of mechanisms and how to assess the interaction were recognized. The gaps originally identified in 2008 are still pertinent today. Common and standardized assessments for “mobility and cognition” are still not in place in current practice. Interventions that target mobility and cognitive decline as a single entity are still lacking
Metabolic imaging across scales reveals distinct prostate cancer phenotypes
Hyperpolarised magnetic resonance imaging (HP-13C-MRI) has shown promise as a clinical tool for detecting and characterising prostate cancer. Here we use a range of spatially resolved histological techniques to identify the biological mechanisms underpinning differential [1-13C]lactate labelling between benign and malignant prostate, as well as in tumours containing cribriform and non-cribriform Gleason pattern 4 disease. Here we show that elevated hyperpolarised [1-13C]lactate signal in prostate cancer compared to the benign prostate is primarily driven by increased tumour epithelial cell density and vascularity, rather than differences in epithelial lactate concentration between tumour and normal. We also demonstrate that some tumours of the cribriform subtype may lack [1-13C]lactate labelling, which is explained by lower epithelial lactate dehydrogenase expression, higher mitochondrial pyruvate carrier density, and increased lipid abundance compared to lactate-rich non-cribriform lesions. These findings highlight the potential of combining spatial metabolic imaging tools across scales to identify clinically significant metabolic phenotypes in prostate cancer
Comparison of Osteosarcoma Aggregated Tumour Models with Human Tissue by Multimodal Mass Spectrometry Imaging
Osteosarcoma (OS) is the most common primary bone malignancy and largely effects adolescents and young adults, with 60% of patients under the age of 25. There are multiple cell models of OS described in vitro that express the specific genetic alterations of the sarcoma. In the work reported here, multiple mass spectrometry imaging (MSI) modalities were employed to characterise two aggregated cellular models of OS models formed using the MG63 and SAOS-2 cell lines. Phenotyping of the metabolite activity within the two OS aggregoid models was achieved and a comparison of the metabolite data with OS human tissue samples revealed relevant fatty acid and phospholipid markers. Although, annotations of these species require MS/MS analysis for confident identification of the metabolites. From the putative assignments however, it was suggested that the MG63 aggregoids are an aggressive tumour model that exhibited metastatic-like potential. Alternatively, the SAOS-2 aggregoids are more mature osteoblast-like phenotype that expressed characteristics of cellular differentiation and bone development. It was determined the two OS aggregoid models shared similarities of metabolic behaviour with different regions of OS human tissues, specifically of the higher metastatic grade
Microbiome-derived carnitine mimics as previously unknown mediators of gut-brain axis communication
Alterations to the gut microbiome are associated with various neurological diseases, yet evidence of causality and identity of microbiome-derived compounds that mediate gut-brain axis interaction remain elusive. Here, we identify two previously unknown bacterial metabolites 3-methyl-4-(trimethylammonio)butanoate and 4-(trimethylammonio)pentanoate, structural analogs of carnitine that are present in both gut and brain of specific pathogen–free mice but absent in germ-free mice. We demonstrate that these compounds are produced by anaerobic commensal bacteria from the family Lachnospiraceae (Clostridiales) family, colocalize with carnitine in brain white matter, and inhibit carnitine-mediated fatty acid oxidation in a murine cell culture model of central nervous system white matter. This is the first description of direct molecular inter-kingdom exchange between gut prokaryotes and mammalian brain cells, leading to inhibition of brain cell function
- …