228 research outputs found

    On the morphology of ammonium nitrate (III): theory and observation

    Get PDF
    The aim of this paper is to derive on a theoretical basis the morphology of crystals of ammonium nitrate, phase III, and to compare the results with experimental growth forms. The theory used is based on the concepts of periodic bond chain (PBC), F face and connected net, developed by Hartman and Perdok. Further an Ising model is used to determine roughening temperatures. Based on different criteria theoretical growth forms are predicted and compared with experiments

    Density-functional embedding using a plane-wave basis

    Full text link
    The constrained electron density method of embedding a Kohn-Sham system in a substrate system (first described by P. Cortona, Phys. Rev. B {\bf 44}, 8454 (1991) and T.A. Wesolowski and A. Warshel, J. Phys. Chem {\bf 97}, 8050 (1993)) is applied with a plane-wave basis and both local and non-local pseudopotentials. This method divides the electron density of the system into substrate and embedded electron densities, the sum of which is the electron density of the system of interest. Coupling between the substrate and embedded systems is achieved via approximate kinetic energy functionals. Bulk aluminium is examined as a test case for which there is a strong interaction between the substrate and embedded systems. A number of approximations to the kinetic-energy functional, both semi-local and non-local, are investigated. It is found that Kohn-Sham results can be well reproduced using a non-local kinetic energy functional, with the total energy accurate to better than 0.1 eV per atom and good agreement between the electron densities.Comment: 11 pages, 4 figure

    Probing Jet Launching in Neutron Star X-Ray Binaries: The Variable and Polarized Jet of SAX J1808.4-3658

    Get PDF
    Indexación ScopusWe report on an optical photometric and polarimetric campaign on the accreting millisecond X-ray pulsar (AMXP) x display--inline-block" style="background: var(--highlight-yellow); color: inherit;">SAX x display--inline-block" style="background: var(--highlight-yellow); color: inherit;">4-x display--inline-block" style="background: var(--highlight-yellow); color: inherit;">J1808.x display--inline-block" style="background: var(--highlight-yellow); color: inherit;">4-x display--inline-block" style="background: var(--highlight-yellow); color: inherit;">3658 during its 2019 outburst. The emergence of a low-frequency excess x display--inline-block" style="background: var(--highlight-yellow); color: inherit;">in the spectral energy distribution x display--inline-block" style="background: var(--highlight-yellow); color: inherit;">in the form of a red excess above the disk spectrum (seen most prominently x display--inline-block" style="background: var(--highlight-yellow); color: inherit;">in the z, i, and R bands) is observed as the outburst evolves. This is indicative of optically thin synchrotron emission due to a jet, as seen previously x display--inline-block" style="background: var(--highlight-yellow); color: inherit;">in this source and x display--inline-block" style="background: var(--highlight-yellow); color: inherit;">in other AMXPs during outburst. At the end of the outburst decay, the source enters a reflaring state. The low-frequency excess is still observed during the reflares. Our optical (BVRI) polarimetric campaign shows variable linear polarization (LP) throughout the outburst. We show that this is intrinsic to the source, with low-level but significant detections (0.2%-2%) x display--inline-block" style="background: var(--highlight-yellow); color: inherit;">in all bands. The LP spectrum is red during both the main outburst and the reflaring state, favoring a jet origin for this variable polarization over other interpretations, such as Thomson scattering with free electrons from the disk or the propelled matter. During the reflaring state, a few episodes with stronger LP levels (1%-2%) are observed. The low-level, variable LP is suggestive of strongly tangled magnetic fields near the base of the jet. These results clearly demonstrate how polarimetry is a powerful tool for x display--inline-block" style="background: var(--highlight-yellow); color: inherit;">probing the magnetic field structure x display--inline-block" style="background: var(--highlight-yellow); color: inherit;">in X-ray binary jets, as for active galactic nuclei jets. © 2020. The American Astronomical Society. All rights reserved..https://iopscience-iop-org.recursosbiblioteca.unab.cl/article/10.3847/1538-4357/abc68

    Watched over or over-watched? Open street CCTV in Australia

    Get PDF
    Most developed countries, Australia included, are witnessing increased government and public concerns about crime and security. Amid these anxieties, closed circuit television (CCTV) systems to monitor public spaces are increasingly being touted as a solution to problems of crime and disorder. The city of Perth established Australia’s first open street closed circuit television system in July 1991. Subsequently, there has been significant expansion. At the end of 2002 Australia had 33 “open street” CCTV schemes. Based on site inspections, extensive reviews of documentation and interviews with 22 Australian administrators, this article discusses issues relating to system implementation, management and accountability.We also suggest ways relevant authorities might ensure that current and future schemes are appropriately audited and evaluated. We argue that rigorous independent assessment of both the intended and unintended consequences of open street CCTV is essential to ensure this measure is not deployed inappropriately. Finally, this article suggests any potential crime prevention benefits must be carefully weighed against the potential of CCTV to exacerbate social division and exclusion

    Will a rising sea sink some estuarine wetland ecosystems?

    Get PDF
    Sea-level rise associatedwith climate change presents amajor challenge to plant diversity and ecosystemservice provision in coastal wetlands. In this study,we investigate the effect of sea-level rise on benthos, vegetation, and ecosystem diversity in a tidal wetland in westWales, the UK. Present relationships between plant communities and environmental variableswere investigated through 50 plots atwhich vegetation (species and coverage), hydrological (surface or groundwater depth, conductivity) and soil (matrix chroma, presence or absence ofmottles, organic content, particle size) data were collected. Benthic communities were sampled at intervals along a continuum from saline to freshwater. To ascertain future changes to the wetlands' hydrology, a GIS-based empirical model was developed. Using a LiDAR derived land surface, the relative effect of peat accumulation and rising sea levels were modelled over 200 years to determine how frequently portions of the wetland will be inundated by mean sea level, mean high water spring and mean high water neap conditions. The model takes into account changing extents of peat accumulation as hydrological conditions alter. Model results show that changes to the wetland hydrology will initially be slow. However, changes in frequency and extent of inundation reach a tipping point 125 to 175 years from2010 due to the extremely low slope of the wetland. From then onwards, large portions of the wetland become flooded at every flood tide and saltwater intrusion becomes more common. This will result in a reduction in marsh biodiversity with plant communities switching toward less diverse and occasionally monospecific communities that are more salt tolerant.IS

    The evolution of language: a comparative review

    Get PDF
    For many years the evolution of language has been seen as a disreputable topic, mired in fanciful "just so stories" about language origins. However, in the last decade a new synthesis of modern linguistics, cognitive neuroscience and neo-Darwinian evolutionary theory has begun to make important contributions to our understanding of the biology and evolution of language. I review some of this recent progress, focusing on the value of the comparative method, which uses data from animal species to draw inferences about language evolution. Discussing speech first, I show how data concerning a wide variety of species, from monkeys to birds, can increase our understanding of the anatomical and neural mechanisms underlying human spoken language, and how bird and whale song provide insights into the ultimate evolutionary function of language. I discuss the ‘‘descended larynx’ ’ of humans, a peculiar adaptation for speech that has received much attention in the past, which despite earlier claims is not uniquely human. Then I will turn to the neural mechanisms underlying spoken language, pointing out the difficulties animals apparently experience in perceiving hierarchical structure in sounds, and stressing the importance of vocal imitation in the evolution of a spoken language. Turning to ultimate function, I suggest that communication among kin (especially between parents and offspring) played a crucial but neglected role in driving language evolution. Finally, I briefly discuss phylogeny, discussing hypotheses that offer plausible routes to human language from a non-linguistic chimp-like ancestor. I conclude that comparative data from living animals will be key to developing a richer, more interdisciplinary understanding of our most distinctively human trait: language

    Outcome Feedback Effects on Risk Propensity in an MCPLP Task

    Get PDF
    In this experimental analysis, the effects of outcome feedback on risk propensity were assessed within the multiple-cue-probability-learning-paradigm (MCPLP). The individual decision maker in this task received outcome feedback on a decision-by-decision basis. It was hypothesized that information on his/her success or lack of success (outcome feedback) on each decision would influence the decision to risk (commit) resources. Hierarchical regression results revealed that after all other performance effects had been partialled out, current outcome feedback explained much of the commitment decision.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    Broadband Quantum Enhancement of the LIGO Detectors with Frequency-Dependent Squeezing

    Get PDF
    Quantum noise imposes a fundamental limitation on the sensitivity of interferometric gravitational-wave detectors like LIGO, manifesting as shot noise and quantum radiation pressure noise. Here, we present the first realization of frequency-dependent squeezing in full-scale gravitational-wave detectors, resulting in the reduction of both shot noise and quantum radiation pressure noise, with broadband detector enhancement from tens of hertz to several kilohertz. In the LIGO Hanford detector, squeezing reduced the detector noise amplitude by a factor of 1.6 (4.0 dB) near 1 kHz; in the Livingston detector, the noise reduction was a factor of 1.9 (5.8 dB). These improvements directly impact LIGO's scientific output for high-frequency sources (e.g., binary neutron star postmerger physics). The improved low-frequency sensitivity, which boosted the detector range by 15%-18% with respect to no squeezing, corresponds to an increase in the astrophysical detection rate of up to 65%. Frequency-dependent squeezing was enabled by the addition of a 300-meter-long filter cavity to each detector as part of the LIGO A+ upgrade
    • 

    corecore