399 research outputs found
STM observation of electronic wave interference effect in finite-sized graphite with dislocation-network structures
Superperiodic patterns near a step edge were observed by STM on
several-layer-thick graphite sheets on a highly oriented pyrolitic graphite
substrate, where a dislocation network is generated at the interface between
the graphite overlayer and the substrate. Triangular- and rhombic-shaped
periodic patterns whose periodicities are around 100 nm were observed on the
upper terrace near the step edge. In contrast, only outlines of the patterns
similar to those on the upper terrace were observed on the lower terrace. On
the upper terrace, their geometrical patterns gradually disappeared and became
similar to those on the lower terrace without any changes of their periodicity
in increasing a bias voltage. By assuming a periodic scattering potential at
the interface due to dislocations, the varying corrugation amplitudes of the
patterns can be understood as changes in LDOS as a result of the beat of
perturbed and unperturbed waves, i.e. the interference in an overlayer. The
observed changes in the image depending on an overlayer height and a bias
voltage can be explained by the electronic wave interference in the ultra-thin
overlayer distorted under the influence of dislocation-network structures.Comment: 8 pages; 6 figures; Paper which a part of cond-mat/0311068 is
disscussed in detai
Clinical perspectives on sampling and processing approaches for the management of infection in diabetic foot ulceration: A qualitative study
Diabetic foot ulcers (DFUs) often become infected and are treated with antimicrobials, with samples collected to inform care. Swab samples are easier than tissue sampling but report fewer organisms. Compared with culture and sensitivity (C&S) methods, molecular microbiology identifies more organisms. Clinician perspectives on sampling and processing are unknown. We explored clinician perspectives on DFU sampling—tissue samples/wound swabs—and on processing techniques, culture and sensitivity or molecular techniques. The latter provides information on organisms which have not survived transport to the laboratory for culture. We solicited feedback on molecular microbiology reports. Qualitative study using semi-structured interview, with analysis using a Framework approach. CODIFI2 clinicians from UK DFU clinics. Seven consultants agreed to take part. They reported, overall, a preference for tissue samples over swabbing. Clinicians were not confident replacing C&S with molecular microbiology as the approach to reporting was unfamiliar. The study was small and did not recruit any podiatrists or nurses, who may have discipline-specific attitudes or perspectives on DFU care. Both sampling approaches appear to be used by clinicians. Molecular microbiology reports would not be, at present, suitable for replacement of traditional culture and sensitivity
Atmospheric Heating and Wind Acceleration: Results for Cool Evolved Stars based on Proposed Processes
A chromosphere is a universal attribute of stars of spectral type later than
~F5. Evolved (K and M) giants and supergiants (including the zeta Aurigae
binaries) show extended and highly turbulent chromospheres, which develop into
slow massive winds. The associated continuous mass loss has a significant
impact on stellar evolution, and thence on the chemical evolution of galaxies.
Yet despite the fundamental importance of those winds in astrophysics, the
question of their origin(s) remains unsolved. What sources heat a chromosphere?
What is the role of the chromosphere in the formation of stellar winds? This
chapter provides a review of the observational requirements and theoretical
approaches for modeling chromospheric heating and the acceleration of winds in
single cool, evolved stars and in eclipsing binary stars, including physical
models that have recently been proposed. It describes the successes that have
been achieved so far by invoking acoustic and MHD waves to provide a physical
description of plasma heating and wind acceleration, and discusses the
challenges that still remain.Comment: 46 pages, 9 figures, 1 table; modified and unedited manuscript;
accepted version to appear in: Giants of Eclipse, eds. E. Griffin and T. Ake
(Berlin: Springer
Gamma-Ray Bursts: The Underlying Model
A pedagogical derivation is presented of the ``fireball'' model of gamma-ray
bursts, according to which the observable effects are due to the dissipation of
the kinetic energy of a relativistically expanding wind, a ``fireball.'' The
main open questions are emphasized, and key afterglow observations, that
provide support for this model, are briefly discussed. The relativistic outflow
is, most likely, driven by the accretion of a fraction of a solar mass onto a
newly born (few) solar mass black hole. The observed radiation is produced once
the plasma has expanded to a scale much larger than that of the underlying
``engine,'' and is therefore largely independent of the details of the
progenitor, whose gravitational collapse leads to fireball formation. Several
progenitor scenarios, and the prospects for discrimination among them using
future observations, are discussed. The production in gamma- ray burst
fireballs of high energy protons and neutrinos, and the implications of burst
neutrino detection by kilometer-scale telescopes under construction, are
briefly discussed.Comment: In "Supernovae and Gamma Ray Bursters", ed. K. W. Weiler, Lecture
Notes in Physics, Springer-Verlag (in press); 26 pages, 2 figure
Modelling interventions and contact networks to reduce the spread of carbapenem-resistant organisms between individuals in the ICU
Background: Contact precautions are widely used to prevent the transmission of carbapenem-resistant organisms (CROs) in hospital wards. However, evidence for their effectiveness in natural hospital environments is limited. Objective: To determine which contact precautions, healthcare worker (HCW)–patient interactions, and patient and ward characteristics are associated with greater risk of CRO infection or colonization. Design, setting and participants: CRO clinical and surveillance cultures from two high-acuity wards were assessed through probabilistic modelling to characterize a susceptible patient's risk of CRO infection or colonization during a ward stay. User- and time-stamped electronic health records were used to build HCW-mediated contact networks between patients. Probabilistic models were adjusted for patient (e.g. antibiotic administration) and ward (e.g. hand hygiene compliance, environmental cleaning) characteristics. The effects of risk factors were assessed by adjusted odds ratio (aOR) and 95% Bayesian credible intervals (CrI). Exposures: The degree of interaction with CRO-positive patients, stratified by whether CRO-positive patients were on contact precautions. Main outcomes and measures: The prevalence of CROs and number of new carriers (i.e. incident CRO aquisition). Results: Among 2193 ward visits, 126 (5.8%) patients became colonized or infected with CROs. Susceptible patients had 4.8 daily interactions with CRO-positive individuals on contact precautions (vs 1.9 interactions with those not on contact precautions). The use of contact precautions for CRO-positive patients was associated with a reduced rate (7.4 vs 93.5 per 1000 patient-days at risk) and odds (aOR 0.03, 95% CrI 0.01–0.17) of CRO acquisition among susceptible patients, resulting in an estimated absolute risk reduction of 9.0% (95% CrI 7.6–9.2%). Also, carbapenem administration to susceptible patients was associated with increased odds of CRO acquisition (aOR 2.38, 95% CrI 1.70–3.29). Conclusions and relevance: In this population-based cohort study, the use of contact precautions for patients colonized or infected with CROs was associated with lower risk of CRO acquisition among susceptible patients, even after adjusting for antibiotic exposure. Further studies that include organism genotyping are needed to confirm these findings
Additional Nucleon Current Contributions to Neutrinoless Double Beta Decay
We have examined the importance of momentum dependent induced nucleon
currents such as weak-magnetism and pseudoscalar couplings to the amplitude of
neutrinoless double beta decay in the mechanisms of light and heavy Majorana
neutrino as well as in that of Majoron emission. Such effects are expected to
occur in all nuclear models in the direction of reducing the light neutrino
matrix elements by about 30%. To test this we have performed a calculation of
the nuclear matrix elements of the experimentally interesting nuclei A = 76,
82, 96, 100, 116, 128, 130, 136 and 150 within the pn-RQRPA. We have found that
indeed such corrections vary somewhat from nucleus to nucleus, but in all cases
they are greater than 25 percent. In the case of heavy neutrino the effect is
much larger (a factor of 3). Combining out results with the best presently
available experimental limits on the half-life of the neutrinoless double beta
decay we have extracted new limits on the effective neutrino mass (light and
heavy) and the effective Majoron coupling constant.Comment: 31 pages, RevTex, 3 Postscript figures, submitted to Phys. Rev.
Observing the First Stars and Black Holes
The high sensitivity of JWST will open a new window on the end of the
cosmological dark ages. Small stellar clusters, with a stellar mass of several
10^6 M_sun, and low-mass black holes (BHs), with a mass of several 10^5 M_sun
should be directly detectable out to redshift z=10, and individual supernovae
(SNe) and gamma ray burst (GRB) afterglows are bright enough to be visible
beyond this redshift. Dense primordial gas, in the process of collapsing from
large scales to form protogalaxies, may also be possible to image through
diffuse recombination line emission, possibly even before stars or BHs are
formed. In this article, I discuss the key physical processes that are expected
to have determined the sizes of the first star-clusters and black holes, and
the prospect of studying these objects by direct detections with JWST and with
other instruments. The direct light emitted by the very first stellar clusters
and intermediate-mass black holes at z>10 will likely fall below JWST's
detection threshold. However, JWST could reveal a decline at the faint-end of
the high-redshift luminosity function, and thereby shed light on radiative and
other feedback effects that operate at these early epochs. JWST will also have
the sensitivity to detect individual SNe from beyond z=10. In a dedicated
survey lasting for several weeks, thousands of SNe could be detected at z>6,
with a redshift distribution extending to the formation of the very first stars
at z>15. Using these SNe as tracers may be the only method to map out the
earliest stages of the cosmic star-formation history. Finally, we point out
that studying the earliest objects at high redshift will also offer a new
window on the primordial power spectrum, on 100 times smaller scales than
probed by current large-scale structure data.Comment: Invited contribution to "Astrophysics in the Next Decade: JWST and
Concurrent Facilities", Astrophysics & Space Science Library, Eds. H.
Thronson, A. Tielens, M. Stiavelli, Springer: Dordrecht (2008
On the selection of AGN neutrino source candidates for a source stacking analysis with neutrino telescopes
The sensitivity of a search for sources of TeV neutrinos can be improved by
grouping potential sources together into generic classes in a procedure that is
known as source stacking. In this paper, we define catalogs of Active Galactic
Nuclei (AGN) and use them to perform a source stacking analysis. The grouping
of AGN into classes is done in two steps: first, AGN classes are defined, then,
sources to be stacked are selected assuming that a potential neutrino flux is
linearly correlated with the photon luminosity in a certain energy band (radio,
IR, optical, keV, GeV, TeV). Lacking any secure detailed knowledge on neutrino
production in AGN, this correlation is motivated by hadronic AGN models, as
briefly reviewed in this paper.
The source stacking search for neutrinos from generic AGN classes is
illustrated using the data collected by the AMANDA-II high energy neutrino
detector during the year 2000. No significant excess for any of the suggested
groups was found.Comment: 43 pages, 12 figures, accepted by Astroparticle Physic
Supermassive black holes in scalar field galaxy halos
Ultra-light scalar fields provide an interesting alternative to WIMPS as halo
dark matter. In this paper we consider the effect of embedding a supermassive
black hole within such a halo, and estimate the absorption probability and the
accretion rate of dark matter onto the black hole. We show that the accretion
rate would be small over the lifetime of a typical halo, and hence that
supermassive central black holes can coexist with scalar field halos.Comment: 5 pages RevTex4, no figures. Updated file to match published versio
- …