12,788 research outputs found

    Cubic spline prewavelets on the four-directional mesh

    Get PDF
    In this paper, we design differentiable, two dimensional, piecewise polynomial cubic prewavelets of particularly small compact support. They are given in closed form, and provide stable, orthogonal decompositions of L^2(\RR^2). In particular, the splines we use in our prewavelet constructions give rise to stable bases of spline spaces that contain all cubic polynomials, whereas the more familiar box spline constructions cannot reproduce all cubic polynomials, unless resorting to a box spline of higher polynomial degree

    Analytical solution of two-layer beam taking into account interlayer slip and shear deformation

    Get PDF
    A mathematical model is proposed and its analytical solution derived for the analysis of the geometrically and materially linear two-layer beams with different material and geometric characteristics of an individual layer. The model takes into account the effect of the transverse shear deformation on displacements in each layer. The analytical study is carried out to evaluate the influence of the transverse shear deformation on the static and kinematic quantities. We study a simply supported two-layer planar beam subjected to the uniformly distributed load. Parametric studies have been performed to investigate the influence of shear by varying material and geometric parameters, such as interlayer slip modulus (K), flexural-to-shear moduli ratios (E/G) and span-to-depth ratios (L/h). The comparison of the results for vertical deflections shows that shear deformations are more important for high slip modulus, for ``short'' beams with small L/h ratios, and beams with high E/G ratios. In these cases, the effect of the shear deformations becomes significant and has to be addressed in design. It also becomes apparent that models, which consider the partial interaction between the layers, should be employed if beams have very flexible connections

    Canonical-basis solution of the Hartree-Fock-Bogoliubov equation on three-dimensional Cartesian mesh

    Full text link
    A method is presented to obtain the canonical-form solutions of the HFB equation for atomic nuclei with zero-range interactions like the Skyrme force. It is appropriate to describe pairing correlations in the continuum in coordinate-space representations. An improved gradient method is used for faster convergences under constraint of orthogonality between orbitals. To prevent high-lying orbitals to shrink into a spatial point, a repulsive momentum dependent force is introduced, which turns out to unveil the nature of high-lying canonical-basis orbitals. The asymptotic properties at large radius and the relation with quasiparticle states are discussed for the obtained canonical basis.Comment: 23 pages including 17 figures, REVTeX4, revised version, scheduled to appear in Phys. Rev. C, Vol.69, No.

    Weak local rules for planar octagonal tilings

    Full text link
    We provide an effective characterization of the planar octagonal tilings which admit weak local rules. As a corollary, we show that they are all based on quadratic irrationalities, as conjectured by Thang Le in the 90s.Comment: 23 pages, 6 figure

    Gamow-Teller Strengths of the Inverse-Beta Transition 176Yb --> 176Lu for Spectroscopy of Proton-Proton and other sub-MeV Solar Neutrinos

    Full text link
    Discrete Gamow-Teller (GT) transitions, 176Yb-->176Lu at low excitation energies have been measured via the (3He,t) reaction at 450 MeV and at 0 degrees. For 176Yb, two low-lying states are observed, setting low thresholds Q(neutrino)=301 and 445 keV for neutrino capture. Capture rates estimated from the measured GT strengths, the simple two-state excitation structure, and the low Q(neutrino) in Yb--Lu indicate that Yb-based neutrino-detectors are well suited for a direct measurement of the complete sub-MeV solar electron-neutrino spectrum (including pp neutrinos) where definitive effects of flavor conversion are expected

    Uncertainty estimates and L_2 bounds for the Kuramoto-Sivashinsky equation

    Full text link
    We consider the Kuramoto-Sivashinsky (KS) equation in one spatial dimension with periodic boundary conditions. We apply a Lyapunov function argument similar to the one first introduced by Nicolaenko, Scheurer, and Temam, and later improved by Collet, Eckmann, Epstein and Stubbe, and Goodman, to prove that ||u||_2 < C L^1.5. This result is slightly weaker than that recently announced by Giacomelli and Otto, but applies in the presence of an additional linear destabilizing term. We further show that for a large class of Lyapunov functions \phi the exponent 1.5 is the best possible from this line of argument. Further, this result together with a result of Molinet gives an improved estimate for L_2 boundedness of the Kuramoto-Sivashinsky equation in thin rectangular domains in two spatial dimensions.Comment: 17 pages, 1 figure; typos corrected, references added; figure modifie

    Anderson localization of a weakly interacting one dimensional Bose gas

    Full text link
    We consider the phase coherent transport of a quasi one-dimensional beam of Bose-Einstein condensed particles through a disordered potential of length L. Among the possible different types of flow identified in [T. Paul et al., Phys. Rev. Lett. 98, 210602 (2007)], we focus here on the supersonic stationary regime where Anderson localization exists. We generalize the diffusion formalism of Dorokhov-Mello-Pereyra-Kumar to include interaction effects. It is shown that interactions modify the localization length and also introduce a length scale L* for the disordered region, above which most of the realizations of the random potential lead to time dependent flows. A Fokker-Planck equation for the probability density of the transmission coefficient that takes this new effect into account is introduced and solved. The theoretical predictions are verified numerically for different types of disordered potentials. Experimental scenarios for observing our predictions are discussed.Comment: 20 pages, 13 figure

    Temperature dependent BCS equations with continuum coupling

    Get PDF
    The temperature dependent BCS equations are modified in order to include the contribution of the continuum single particle states. The influence of the continuum upon the critical temperature corresponding to the phase transition from a superfluid to a normal state and upon the behaviour of the excitation energy and of the entropy is discussed.Comment: 9 pages, 3 figures, to appear in Phys. Rev.
    corecore