663 research outputs found
Inflammation and Bone Repair: From Particle Disease to Tissue Regeneration
When presented with an adverse stimulus, organisms evoke an immediate, pre-programmed, non-specific innate immune response. The purpose of this reaction is to maintain the organism's biological integrity and function, mitigate or eradicate the injurious source, and re-establish tissue homeostasis. The initial stage of this protective reaction is acute inflammation, which normally reduces or terminates the offending stimulus. As the inflammatory reaction recedes, the stage of tissue repair and regeneration follows. If the above sequence of events is perturbed, reconstitution of normal biological form and function will not be achieved. Dysregulation of these activities may result in incomplete healing, fibrosis, or chronic inflammation. Our laboratory has studied the reaction to wear particles from joint replacements as a paradigm for understanding the biological pathways of acute and chronic inflammation, and potential translational treatments to reconstitute lost bone. As inflammation is the cornerstone for healing in all anatomical locations, the concepts developed have relevance to tissue engineering and regenerative medicine in all organ systems. To accomplish our goal, we developed novel in vitro and in vivo models (including the murine femoral continuous intramedullary particle infusion model), translational strategies including modulation of macrophage chemotaxis and polarization, and methods to interfere with key transcription factors NF kappa B and MyD88. We purposefully modified MSCs to facilitate bone healing in inflammatory scenarios: by preconditioning the MSCs, and by genetically modifying MSCs to first sense NF kappa B activation and then overexpress the anti-inflammatory pro-regenerative cytokine IL-4. These advancements provide significant translational opportunities to enhance healing in bone and other organs.Peer reviewe
Prevalence of drug-herb and drug-supplement interactions in older adults : A cross-sectional survey
© British Journal of General PracticeBackground Polypharmacy is common among older adults, with increasing numbers also using prescription drugs with herbal medicinal products (HMPs) and dietary supplements. There is no reliable evidence from the UK on concurrent use of HMPs and dietary supplements with prescription drugs in older adults. Aim To establish prevalence of concurrent prescription drugs, HMPs, and dietary supplements among UK community-dwelling older adults and identify potential interactions. Design and setting Cross-sectional survey of older adults registered at two general practices in South East England. Method A questionnaire asking about prescription medications, HMPs, and sociodemographic information was posted to 400 older adults aged ≥65 years, identified as taking ≥1 prescription drug. Results In total 155 questionnaires were returned (response rate = 38.8%) and the prevalence of concurrent HMPs and dietary supplements with prescriptions was 33.6%. Females were more likely than males to be concurrent users (43.4% versus 22.5%; P = 0.009). The number of HMPs and dietary supplements ranged from 1 to 8, (mean = 3, median = 1; standard deviation = 1.65). The majority of concurrent users (78.0%) used dietary supplements with prescription drugs. The most commonly used dietary supplements were cod liver oil, glucosamine, multivitamins, and Vitamin D. Others (20.0%) used only HMPs with prescription drugs. Common HMPs were evening primrose oil, valerian, and Nytol Herbal® (a combination of hops, gentian, and passion flower). Sixteen participants (32.6%) were at risk of potential adverse drug interactions. Conclusion GPs should routinely ask questions regarding herbal and supplement use, to identify and manage older adults at potential risk of adverse drug interactions.Peer reviewe
A systematic review of phenotypic responses to between-population outbreeding
This work was supported by the UK Population Biology Network, through funding from the Natural Environment Research Council and Natural England. We thank Jack Brodie, Helen Hipperson, Marie Chadburn and Sophie Allen for assistance with literature searching, article assessment and data extraction. We also thank our review group for constructive criticism on the scope, development and structure of this review, and two peer reviewers for useful feedback on the review protocol. Finally we thank three peer reviewers who each provided constructive comments on this systematic review report.Peer reviewedPublisher PD
Preconditioning of murine mesenchymal stem cells synergistically enhanced immunomodulation and osteogenesis
Abstract
Background
Mesenchymal stem cells (MSCs) are capable of immunomodulation and tissue regeneration, highlighting their potential translational application for treating inflammatory bone disorders. MSC-mediated immunomodulation is regulated by proinflammatory cytokines and pathogen-associated molecular patterns such as lipopolysaccharide (LPS). Previous studies showed that MSCs exposed to interferon gamma (IFN-γ) and the proinflammatory cytokine tumor necrosis factor alpha (TNF-α) synergistically suppressed T-cell activation.
Methods
In the current study, we developed a novel preconditioning strategy for MSCs using LPS plus TNF-α to optimize the immunomodulating ability of MSCs on macrophage polarization.
Results
Preconditioned MSCs enhanced anti-inflammatory M2 macrophage marker expression (Arginase 1 and CD206) and decreased inflammatory M1 macrophage marker (TNF-α/IL-1Ra) expression using an in-vitro coculture model. Immunomodulation of MSCs on macrophages was significantly increased compared to the combination of IFN-γ plus TNF-α or single treatment controls. Increased osteogenic differentiation including alkaline phosphate activity and matrix mineralization was only observed in the LPS plus TNF-α preconditioned MSCs. Mechanistic studies showed that increased prostaglandin E2 (PGE2) production was associated with enhanced Arginase 1 expression. Selective cyclooxygenase-2 inhibition by Celecoxib decreased PGE2 production and Arginase 1 expression in cocultured macrophages.
Conclusions
The novel preconditioned MSCs have increased immunomodulation and bone regeneration potential and could be applied to the treatment of inflammatory bone disorders including periprosthetic osteolysis, fracture healing/nonunions, and osteonecrosis
Effect of Aging on the Macrophage Response to Titanium Particles
Macrophage-mediated inflammatory reaction to implant wear particles drives bone loss around total joint replacements (TJR). Although most TJR recipients are elderly, studies linking wear particle-activated macrophages and peri-implant osteolysis have not taken into account the multiple effects that aging has on the innate immune system and, in particular, on macrophages. To address this, we compared the wear particle responses of bone marrow macrophages obtained from young (2-month) and aged (18-month) mice. Macrophages were polarized to M0, M1, or M2 phenotypes in vitro, challenged with titanium particles, and their inflammatory response was characterized at multiple time points by quantitative reverse-transcription polymerase chain reaction and enzyme-linked immunosorbent assay. In addition, age-dependent changes in activation of transcription factor nuclear factor-kappa B were analyzed by a lentiviral vector-based luciferase reporter system. The particle stimulation experiment was further repeated using human primary macrophages isolated from blood donors of different ages. We found that the pro-inflammatory responses were generally higher in macrophages obtained from young mice, but differences between the age groups remained small and of uncertain biological significance. Noteworthily, M2 polarization effectively suppressed the particle-induced inflammation in both young and aged macrophages. These results suggest that aging of the innate immune system per se plays no significant role in the response of macrophages to titanium particles, whereas induction of M2 polarization appears a promising strategy to limit macrophage-mediated inflammation regardless of age.Peer reviewe
Biomaterial Hypersensitivity: Is It Real? Supportive Evidence and Approach Considerations for Metal Allergic Patients following Total Knee Arthroplasty
The prospect of biomaterial hypersensitivity developing in response to joint implant materials was first presented more than 30 years ago. Many studies have established probable causation between first-generation metal-on-metal hip implants and hypersensitivity reactions. In a limited patient population, implant failure may ultimately be related to metal hypersensitivity. The examination of hypersensitivity reactions in current-generation metal-on-metal knee implants is comparatively limited. The purpose of this study is to summarize all available literature regarding biomaterial hypersensitivity after total knee arthroplasty, elucidate overall trends about this topic in the current literature, and provide a foundation for clinical approach considerations when biomaterial hypersensitivity is suspected
Hierarchical search strategy for the detection of gravitational waves from coalescing binaries: Extension to post-Newtonian wave forms
The detection of gravitational waves from coalescing compact binaries would
be a computationally intensive process if a single bank of template wave forms
(i.e., a one step search) is used. In an earlier paper we had presented a
detection strategy, called a two step search}, that utilizes a hierarchy of
template banks. It was shown that in the simple case of a family of Newtonian
signals, an on-line two step search was about 8 times faster than an on-line
one step search (for initial LIGO). In this paper we extend the two step search
to the more realistic case of zero spin 1.5 post-Newtonian wave forms. We also
present formulas for detection and false alarm probabilities which take
statistical correlations into account. We find that for the case of a 1.5
post-Newtonian family of templates and signals, an on-line two step search
requires about 1/21 the computing power that would be required for the
corresponding on-line one step search. This reduction is achieved when signals
having strength S = 10.34 are required to be detected with a probability of
0.95, at an average of one false event per year, and the noise power spectral
density used is that of advanced LIGO. For initial LIGO, the reduction achieved
in computing power is about 1/27 for S = 9.98 and the same probabilities for
detection and false alarm as above.Comment: 30 page RevTeX file and 17 figures (postscript). Submitted to PRD Feb
21, 199
Establishment of Green Fluorescent Protein and Firefly Luciferase Expressing Mouse Primary Macrophages for In Vivo Bioluminescence Imaging
Macrophages play a key role in tissue homeostasis as well as in a range of pathological conditions including atherosclerosis, cancer, and autoimmunity. Many aspects of their in vivo behavior are, however, poorly understood. Bioluminescence imaging (BLI) with green fluorescent protein (GFP) and firefly luciferase (FLUC) labelled autologous reporter macrophages could potentially offer a powerful tool to study macrophage biology, but this approach has been hindered by the relative difficulty of efficient gene transfer into primary macrophages. Here we describe a straightforward method for producing large numbers of GFP/FLUC expressing mouse primary macrophages utilizing lentivirus vector, cyclosporine, and a double infection strategy. Using this method we achieved up to 60% of macrophages to express GFP with correspondingly high FLUC signal. When injected into the circulation using a mouse model of local biomaterial induced inflammation and osteolysis, macrophages were initially detectable within the lungs, followed by systemic homing to the local area of chronic inflammation in the distal femur. In addition, transduced macrophages maintained their ability to assume M1 and M2 phenotypes although the GFP/FLUC expression was altered by the polarizing signals. These reporter macrophages could prove to be valuable tools to study the role of macrophages in health and disease.Peer reviewe
- …