152 research outputs found

    Applying Pressure Sensitive Paint Technology to Rotor Blades

    Get PDF
    This report will present details of a Pressure Sensitive Paint (PSP) system for measuring global surface pressures on rotorcrtaft blades in simulated forward flight at the 14- by 22-Foot Subsonic Tunnel at the NASA Langley Research Center. The basics of the PSP method will be discussed and the modifications that were needed to extend this technology for use on rotor blades. Results from a series of tests will also be presented as well as several areas of improvement that have been identified and are currently being developed for future testing

    Investigation of Resonant Photoemission in Gd with X-Ray Linear Dichroism

    Get PDF
    The constructive summing of direct and indirect channels above the absorption threshold of a core level can cause a massive increase in the emission cross section, leading to a phenomenon called resonant photoemission. Using novel magnetic linear dichroism in angular distribution photoelectron spectroscopy experiments and theoretical simulations, we have probed the nature of the resonant photoemission process in Gd metal. It now appears that temporal matching as well as energy matching is a requirement for true resonant photoemission

    Nature of Resonant Photoemission in Gd

    Get PDF
    The phenomenon of resonant photoemission happens when, in addition to a direct photoemission channel, a second indirect channel opens up as the absorption threshold of a core level is crossed. A massive increase in emission cross section can occur, but the nature of the process remains clouded. Using novel magnetic linear dichroism in photoelectron spectroscopy experiments and theoretical calculations, we can now clearly demonstrate that temporal matching of the processes as well as energy matching is a requirement for true resonant photoemission.

    Blade Tip Pressure Measurements Using Pressure Sensitive Paint

    Get PDF
    This paper discusses the application of pressure sensitive paint using laser-based excitation for measurement of the upper surface pressure distribution on the tips of rotor blades in hover and simulated forward flight. The testing was conducted in the Rotor Test Cell and the 14- by 22-ft Subsonic Tunnel at the NASA Langley Research Center on the General Rotor Model System (GRMS) test stand. The Mach-scaled rotor contained three chordwise rows of dynamic pressure transducers for comparison with PSP measurements. The rotor had an 11 ft 1 in. diameter, 5.45 in. main chord and a swept, tapered tip. Three thrust conditions were examined in hover, C(sub T) = 0.004, 0.006 and 0.008. In forward flight, an additional thrust condition, C(sub T) = 0.010 was also examined. All four thrust conditions in forward flight were conducted at an advance ratio of 0.35

    Deployment of a Pressure Sensitive Paint System for Measuring Global Surface Pressures on Rotorcraft Blades in Simulated Forward Flight

    Get PDF
    This paper will present details of a Pressure Sensitive Paint (PSP) system for measuring global surface pressures on the tips of rotorcraft blades in simulated forward flight at the 14- x 22-Foot Subsonic Tunnel at the NASA Langley Research Center. The system was designed to use a pulsed laser as an excitation source and PSP data was collected using the lifetime-based approach. With the higher intensity of the laser, this allowed PSP images to be acquired during a single laser pulse, resulting in the collection of crisp images that can be used to determine blade pressure at a specific instant in time. This is extremely important in rotorcraft applications as the blades experience dramatically different flow fields depending on their position in the rotor disk. Testing of the system was performed using the U.S. Army General Rotor Model System equipped with four identical blades. Two of the blades were instrumented with pressure transducers to allow for comparison of the results obtained from the PSP. Preliminary results show that the PSP agrees both qualitatively and quantitatively with both the expected results as well as with the pressure taps. Several areas of improvement have been indentified and are currently being developed

    Deployment of a Pressure Sensitive Paint System for Measuring Global Surface Pressures on Rotorcraft Blades in Simulated Forward Flight: Preliminary PSP Results from Test 581 in the 14- by 22-Foot Subsonic Tunnel

    Get PDF
    This report will present details of a Pressure Sensitive Paint (PSP) system for measuring global surface pressures on the tips of rotorcraft blades in simulated forward flight at the 14- x 22-Foot Subsonic Tunnel. The system was designed to use a pulsed laser as an excitation source and PSP data was collected using the lifetime-based approach. With the higher intensity of the laser, this allowed PSP images to be acquired during a single laser pulse, resulting in the collection of crisp images that can be used to determine blade pressure at a specific instant in time. This is extremely important in rotorcraft applications as the blades experience dramatically different flow fields depending on their position in the rotor disk. Testing of the system was performed using the U.S. Army General Rotor Model System equipped with four identical blades. Two of the blades were instrumented with pressure transducers to allow for comparison of the results obtained from the PSP. This report will also detail possible improvements to the system

    Evaluation of Deep Learning Strategies for Nucleus Segmentation in Fluorescence Images

    Get PDF
    Identifying nuclei is often a critical first step in analyzing microscopy images of cells and classical image processing algorithms are most commonly used for this task. Recent developments in deep learning can yield superior accuracy, but typical evaluation metrics for nucleus segmentation do not satisfactorily capture error modes that are relevant in cellular images. We present an evaluation framework to measure accuracy, types of errors, and computational efficiency; and use it to compare deep learning strategies and classical approaches. We publicly release a set of 23,165 manually annotated nuclei and source code to reproduce experiments and run the proposed evaluation methodology. Our evaluation framework shows that deep learning improves accuracy and can reduce the number of biologically relevant errors by half. (c) 2019 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
    • …
    corecore