
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

Physics Faculty Research & Creative Works Physics 

01 Aug 1998 

Nature of Resonant Photoemission in Gd Nature of Resonant Photoemission in Gd 

Shubhra R. Mishra 

Thomas K. Cummins 

George Daniel Waddill 
Missouri University of Science and Technology, waddill@mst.edu 

W. J. Gammon 

et. al. For a complete list of authors, see https://scholarsmine.mst.edu/phys_facwork/1188 

Follow this and additional works at: https://scholarsmine.mst.edu/phys_facwork 

 Part of the Physics Commons 

Recommended Citation Recommended Citation 
S. R. Mishra et al., "Nature of Resonant Photoemission in Gd," Physical Review Letters, vol. 81, no. 6, pp. 
1306-1309, American Physical Society (APS), Aug 1998. 
The definitive version is available at https://doi.org/10.1103/PhysRevLett.81.1306 

This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for 
inclusion in Physics Faculty Research & Creative Works by an authorized administrator of Scholars' Mine. This work 
is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the 
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu. 

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/phys_facwork
https://scholarsmine.mst.edu/phys
https://scholarsmine.mst.edu/phys_facwork/1188
https://scholarsmine.mst.edu/phys_facwork?utm_source=scholarsmine.mst.edu%2Fphys_facwork%2F1188&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=scholarsmine.mst.edu%2Fphys_facwork%2F1188&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1103/PhysRevLett.81.1306
mailto:scholarsmine@mst.edu


VOLUME 81, NUMBER 6 P H Y S I C A L R E V I E W L E T T E R S 10 AUGUST 1998

Nature of Resonant Photoemission in Gd
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The phenomenon of resonant photoemission happens when, in addition to a direct photoemission
channel, a second indirect channel opens up as the absorption threshold of a core level is crossed. A
massive increase in emission cross section can occur, but the nature of the process remains clouded.
Using novel magnetic linear dichroism in photoelectron spectroscopy experiments and theoretical
calculations, we can now clearly demonstrate that temporal matching of the processes as well as energy
matching is a requirement for true “resonant photoemission.” [S0031-9007(98)06819-7]

PACS numbers: 75.70.– i, 75.50.–y, 79.60.– i

The photoemission of4f and 5p electrons from rare-
earth metals and their compounds is strongly enhanced
when the photon has just enough energy to excite a
4d electron to an unoccupied4f level, leading to a
process called “resonant photoemission.” (See Fig. 1.)
In a generic picture, the indirect channel of the reso-
nant photoemission is interpreted as due to a process
where a4d electron in the initial state is first excited
to the unoccupied4f level, forming a tightly coupled,
bound intermediate state,4d core hole plus4f electrons.
Then a decay via autoionization occurs, producing a final
state identical to that obtained by a direct photoemission
process for the ejected electron [1]. The transition rate is
greatly enhanced if the excited state decay is by a (super)-
Coster-Kronig [(s)CK] process [2,3]. The key question
is whether these processes are coherent or incoherent: Is
it truly resonant photoemission or merely the incoherent
addition of a second emission channel? Should the over-
all intensity be treated as a squaring of the sum of the
amplitudes (coherent) or summing of the squares of the
amplitudes (incoherent)? A true resonant photoemission
process should be coherent, involving interference terms
between the direct photoemission and indirect photoemis-
sion channels. Possibly, incoherence would give rise to
the loss of photoemission characteristics in the process,
with a domination of Auger-like properties.

To this problem we have applied the new photoelec-
tron spectroscopy technique of magnetic linear dichroism
in angular distributions (MLDAD) [4–7]. This technique
is related to but distinct from the techniques of mag-
netic x ray circular dichroism (MXCD) in photoelectron
spectroscopy and x ray absorption [8–13]. The key is
that while strong MXCD effects in ferromagnets can be
observed with photoemission and absorption, the large
MLDAD effect in ferromagnets is solely a photoemission,
not an absorption-driven, process. This is because the chi-
rality which gives rise to magnetic sensitivity is due to
the vectorial configuration in MLDAD as opposed to the

FIG. 1. (a) Schematic diagram of the direct and indirect
channels in Gd4f resonant photoemission. Time estimates
are based on Refs. [2,3]. (b) Same for Gd5p emission.
(c) Comparison of coherent and incoherent additions of channel
contributions. A0 (AI) is the direct (indirect) amplitude.
(d) The photoabsorption of GdyYs0001d, near the Gd4d
giant resonance. The pre-peak structure occurs between photon
energies of 138–144 eV and the giant resonance is present at
photon energies above 144 eV.
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intrinsic chirality of circularly polarized x rays in the
MXCD techniques [14]. In absorption, where there is an
essential averaging over all emission angles, the vectorial
chirality is lost. Thus, MLDAD is the ideal measurement
to distinguish between photoemission and absorption pro-
cesses. Angle-resolved photoemission in a magnetic sys-
tem should show an MLDAD effect: x ray absorption and
thus Auger-like emission will show no MLDAD effect. It
is this test which we have applied to the resonant photo-
emission of the Gd5p and Gd4f emissions.

Experimental details can be found elsewhere [15–19].
Theoretical spectra were calculated in intermediate cou-
pling using Cowan’s relativistic Hartree-Fock code [20].
Radiative transitions were taken into account to first or-
der and (s)CK transitions to infinite order [21,22]. Line
broadening of the photoelectron state and experimen-
tal resolution were included by a convolution with a
Lorentzian and a Gaussian, respectively. All parameters
were taken the same as in Refs. [13,23] and not adapted
to suit the current measurements. Interference terms be-
tween the photoemission final state continua with orbital
quantum numbers1 2 1 and1 1 1 were fully taken into
account as needed for MLDAD [21]. The interference be-
tween the direct and resonant channel was included in the
4f and excluded in the5p photoemission calculation.

Before considering the photoemission spectra, let us
review the photon energy dependence in the resonance
regime as evidenced in the x ray absorption spectrum.
The total electron yield spectrum from metallic Gd is dis-
played in Fig. 1(d). There is a group of weak narrow
peaks near the4d absorption edge and a broad strong
absorption feature at higher energy, around 150 eV, far
beyond the4d absorption edge. The strong intermediate
coupling resulting from the exchange and Coulomb inter-
action between4d hole and4f electrons results in mul-
tiplet splitting of the4d94f8 configuration [13]. These
interactions are very large due to the large radial over-
lap of the 4d and 4f wave functions. Features in the
4d-4f absorption curve arises from the transition from the
ground state level of the4d104f7 configuration to the nu-
merous intermediate levels of4d94f8 configuration. The
broad maximum or giant resonance arises from the rapid
decay of the intermediate states from the4d94f8 configu-
ration into a continuum with an ejected electron [24,25].
This type of giant resonance absorption has been observed
before in partially filled5f, 4f, and3d metals and their
alloys and compounds [1].

Now consider the4f photoemission results. Figure 2
shows a set of angle-resolved energy distribution curves
(EDC’s) and difference curves. These are at photon en-
ergies corresponding to “on” and “off” resonance of the
4d-4f giant absorption maximum. The resonant photo-
electron spectroscopy (REPES) effects are distinguished
by comparing photoemission intensity of spectra taken on
(150 eV) and off (95 eV) resonance. Experimentally, it
is evident that the fairly strong dichroism (a few percent)

FIG. 2. A series of experimental and theoretical4f photo-
emission spectra (for the two opposite magnetization direc-
tions) and normalized difference curves. (a)hy  150 eV,
photoelectron spectra, experimental. (b)hy  150 eV, pho-
toelectron spectra difference, experimental. (c)hy  95 eV,
photoelectron spectra, experimental. (d)hy  95 eV, photo-
electron spectra difference, experimental. (e)hy  150 eV,
photoelectron spectra, theory. (f )hy  150 eV, photoelec-
tron spectra difference, theory. (g)hy  95 eV, photoelectron
spectra, theory. (h)hy  95 eV, photoelectron spectra differ-
ence, theory. EDC is energy distribution curve. The spectra
in (a), (c), (e), and (g) are EDC’s, where the photon energy is
held constant and the kinetic energy is scanned. PND stands
for peak normalized difference, where the dichroism difference
at each binding energy is divided by the sum of the two inten-
sity maxima, one from each pair (following Refs. [4,19]). The
photon energy of 150 eV is on resonance and 95 eV is off
resonance [cf. Fig. 1(d)]. The relative intensities of the experi-
mental curves were determined by normalizing to the valence
band intensities and then correcting for the valence band cross
sections. (See Refs. [19,36].)

in the Gd4f peak photoemission intensity persists on and
off resonance, despite the fivefold increase in signal size
in going fromhy  95 eV tohy  150 eV. This behav-
ior is also seen in the theoretical spectra in Figs. 2(e) and
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2(g). Here a tenfold increase in intensity at resonance and
a 20% dichroism is predicted. The REPES is caused by
the constructive interference [Fig. 1(a)] between the direct
PE channel and the indirect photoemission channel [21].
Our observation of the retention of an MLDAD effect
in RESPES directly confirms that this transition must be
viewed as a single step process in the case of the Gd
4f. hSpectra taken over the photon energy range of 142–
154 eV show similar but not identical effects [17–19].
The near resemblance of the pairs of theoretical spectra
[2(e) and 2(g)] is somewhat accidental [26].j The inter-
ference between channels is necessary for the observation
of photoemission dichroism in a regime where the indirect
channel dominates the total cross section. So this is clearly
a coherent process, as illustrated in Fig. 1(c), where cross
channel interference is crucial. Our observation of photo-
emission effects in the4f emission resonance is consistent
with earlier related work [12,13,27–30].

Next, let us consider the5p emission shown in Fig. 3.
[See Fig. 1(b) for the channel diagram.] Here there is a
large dichroism observed off resonance athy  137 eV,
with a disappearance of any dichroism on resonance
shy  151 eVd. In this case, there is a threefold increase
experimentally and a tenfold increase theoretically in the
intensity, in going from off resonance to on resonance.
Interestingly, the peak normalized differences (PND’s) or
percentage dichroisms match very well between experi-
ment and theory. Moreover, despite using parameters de-
rived elsewhere [22,23], a very good match is observed
between the theoretical and experimental spectra and dif-
ference curves, including all of the fine structure in the
5p manifold. Over the photon energy range of 138–
150 eV, other EDC pairs exhibit similar dichroic differ-
ences to that athy  137 eV but with strong changes
in the shapes of the “raw” EDC spectra and a decrease
in the dichroism percentage (PND) as the photon energy
moves toward the maximum of the giant resonance [26].
The disappearance correlates with the giant resonance.
Here it is clear that the second equation in Fig. 1(c) ap-
plies, where the process is incoherent and emission at
hy  151 eV is essentially Auger-like, not a direct pho-
toemission process at all.

This raises a key question: ‘Why is the4f emission
“photoemissionlike” and the5p emission “Auger-like”?’
The answer may lie in the regime of time. The Coster-
Kronig decay that occurs in the5p emission occurs on
a time scale of about10215 sec [2]. The super-Coster-
Kronig decay of the4f should be significantly faster [2,3].
This would speed up the indirect channel, bringing it nearer
to the time duration of x ray absorptionst # 10217 secd
that dominates the direct photoemission channel. Thus,
not only must the energies of the two channels match
but also the time duration, in order to observe “true reso-
nant photoemission.” (Owing to complications in other
systems, e.g.,3d transition metal resonant emission, we
will restrict our discussion to Gd and the rare earths here

FIG. 3. Analogous to Fig. 2, with photon energies of 151
and 137 eV and looking at5p emission. The photon energy
of 151 eV is on resonance and the 137 eV is off resonance
[cf. Fig. 1(d)].

[28,31–34].) Now, operating within the constraint that we
are discussing only rare-earth resonant emission, can we
find a correlation in the parameters used to calculate the
theoretical spectra with this simple temporal picture? The
required parameters can be obtained directly from Cowan’s
calculation. However, here starts the first complication
from the proposed holistic model. The Gd4d absorp-
tion spectrum consists of hundreds of different lines each
having different parameters and, therefore, a different co-
herence. Fortunately, in the case of Gd4d edge they di-
vide globally, and rather nicely, into two different regions
(i) the pre-edge peaks and (ii) the giant resonance. We
can deduce two things from the parameters: (a) At a given
photoemission decay channel, the lifetime of the states in
the pre-edge is about 10 to 20 times longer than in the giant
resonance. This is due to the differences in (s)CK decay
rates, as manifestly demonstrated by the strongly differ-
ent line widths in the4d absorption spectrum [Fig. 1(d)].

1308



VOLUME 81, NUMBER 6 P H Y S I C A L R E V I E W L E T T E R S 10 AUGUST 1998

(b) For a given absorption state, the (s)CK decay to the4f
is about 6 times faster than the CK decay to the5p. Thus
the4f photoemission is connected to a 6 times shorter life-
time of the4d hole. If resonant photoemission dichroic
interference effects occur, they will occur for the4f pho-
toemission decay, but only at the giant resonance (i.e.,
where the decay is fastest). Outside of the giant resonance
regime, the regular photoemission dichroic effects can play
a role, as seen in both the Gd4f and5p emission.

We have investigated Gd resonant photoemission with
MLDAD. This photoemission technique allows for a
direct isolation of photoemission and Auger-like contri-
butions [35]. The Gd4f resonant photoemission is con-
firmed to be photoemissionlike. The Gd5p resonant
emission is shown to be dominated by Auger-like contri-
butions. Temporal channel matching is a requirement for
channel interference and the persistence of photoemission
effects.
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