106 research outputs found
Morphology and miscibility of chitosan/soy protein blended membranes
A physico-chemical characterization of blended membranes composed by chitosan and soy protein has been carried out in order to
probe the interactions that allow membranes to be formed from these biopolymer mixtures. These membranes are developed aiming at
applications in wound healing and skin tissue engineering scaffolding. The structural features of chitosan/soy blended membranes were
investigated by means of solid state carbon nuclear magnetic resonance (NMR), infrared spectroscopy (FTIR), contact angle, and atomic
force microscopy. FTIR investigations suggested that chitosan and soy may have participated in a specific intermolecular interaction.
The proton spin–lattice relaxation experiments in the rotating frame on blended membranes indicated that independently of the preparation
conditions, the blend components are not completely miscible possibly due to a weak polymer–protein interaction. It was also
shown that the blended systems showed a rougher surface morphology which was dependent of soy content in the blend system
The long-term culture of human fibroblasts reveals a spectroscopic signature of senescence
Aging is a complex process which leads to progressive loss of fitness/capability/ability, increasing susceptibility to disease and, ultimately, death. Regardless of the organism, there are some features common to aging, namely, the loss of proteostasis and cell senescence. Mammalian cell lines have been used as models to study the aging process, in particular, cell senescence. Thus, the aim of this study was to characterize the senescence-associated metabolic profile of a long-term culture of human fibroblasts using Fourier Transform Infrared and Nuclear Magnetic Resonance spectroscopy. We sub-cultivated fibroblasts from a newborn donor from passage 4 to passage 17 and the results showed deep changes in the spectroscopic profile of cells over time. Late passage cells were characterized by a decrease in the length of fatty acid chains, triglycerides and cholesterol and an increase in lipid unsaturation. We also found an increase in the content of intermolecular β-sheets, possibly indicating an increase in protein aggregation levels in cells of later passages. Metabolic profiling by NMR showed increased levels of extracellular lactate, phosphocholine and glycine in cells at later passages. This study suggests that spectroscopy approaches can be successfully used to study changes concomitant with cell senescence and validate the use of human fibroblasts as a model to monitor the aging process.publishe
Resolving subunit degeneracy with nonsymmetric pseudocontact shifts
Protein Science (2002), 11:2464–2470Desulfovibrio gigas desulforedoxin (Dx) consists of two identical peptides, each containing one [Fe-4S]center per monomer. Variants with different iron and zinc metal compositions arise when desulforedoxin is
produced recombinantly from Escherichia coli. The three forms of the protein, the two homodimers
[Fe(III)/Fe(III)]Dx and [Zn(II)/Zn(II)]Dx, and the heterodimer [Fe(III)/Zn(II)]Dx, can be separated by ion exchange chromatography on the basis of their charge differences. Once separated, the desulforedoxins
containing iron can be reduced with added dithionite. For NMR studies, different protein samples were prepared labeled with 15N or 15N + 13C. Spectral assignments were determined for [Fe(II)/Fe(II)]Dx and
[Fe(II)/Zn(II)]Dx from 3D 15N TOCSY-HSQC and NOESY-HSQC data, and compared with those reported previously for [Zn(II)/Zn(II)]Dx. Assignments for the 13C shifts were obtained from an HNCA experiment.
Comparison of 1H–15N HSQC spectra of [Zn(II)/Zn(II)]Dx, [Fe(II)/Fe(II)]Dx and [Fe(II)/Zn(II)]Dx revealed that the pseudocontact shifts in [Fe(II)/Zn(II)]Dx can be decomposed into inter- and intramonomer components, which, when summed, accurately predict the observed pseudocontact shifts observed for
[Fe(II)/Fe(II)]Dx. The degree of linearity observed in the pseudocontact shifts for residues 8.5 Ă… from the metal center indicates that the replacement of Fe(II) by Zn(II) produces little or no change in the structure of Dx. The results suggest a general strategy for the analysis of NMR spectra of homo-oligomeric proteins
in which a paramagnetic center introduced into a single subunit is used to break the magnetic symmetry and make it possible to obtain distance constraints (both pseudocontact and NOE) between subunits
An NMR structural study of nickel-substituted rubredoxin
J Biol Inorg Chem (2010) 15:409–420
DOI 10.1007/s00775-009-0613-6The Ni(II) and Zn(II) derivatives of Desulfovibrio vulgaris rubredoxin (DvRd) have been studied by NMR spectroscopy to probe the structure at the metal centre. The βCH2 proton pairs from the cysteines that bind the Ni(II) atom have been identified using 1D nuclear Overhauser enhancement (NOE) difference spectra and sequence specifically assigned via NOE correlations to neighbouring protons and by comparison with the published X-ray crystal structure of a Ni(II) derivative of Clostridium pasteurianum rubredoxin. The solution structures of DvRd(Zn) and DvRd(Ni) have been determined and the paramagnetic form refined using pseudocontact shifts. The determination of the magnetic susceptibility anisotropy tensor allowed the contact and pseudocontact contributions to the observed chemical shifts to be obtained. Analysis of the pseudocontact and contact chemical shifts of the cysteine Hβ protons and backbone protons close to the metal centre allowed conclusions to be drawn as to the geometry and hydrogen-bonding pattern at the metal binding site. The importance of NH–S hydrogen bonds at the metal centre for the delocalization of electron spin density is confirmed for rubredoxins and can be extrapolated to metal centres in Cu proteins: amicyanin, plastocyanin, stellacyanin, azurin and pseudoazurin
Identification of cell-surface mannans in a virulent Helicobacter pylori strain
With the intent of contributing to a carbohydrate-based vaccine against the gastroduodenal pathogen, Helicobacter pylori, we report here the structure of cell-surface mannans obtained from a virulent strain. Unlike other wild-type strains, this strain was found to express in good quantities this polysaccharide in vitro. Structural analysis revealed a branched mannan formed by a backbone of α-(1→6)-linked mannopyranosyl residues with approximately 80% branching at the O-2 position. The branches were composed of O-2-linked Man residues in both α- and β-configurations: (image)
In addition, this strain also expressed cell-surface emblematic H. pylori lipopolysaccharides (LPS) containing partially fucosylated polyLacNAc O-chains. Affinity assays with polymyxin-B and concanavalin A revealed no association between the mannan and the LPS. The described mannans may be implicated in the mediation of host–microbial interactions and immunological modulation.This work was supported by Fundacao para a Ciencia e Tecnologia (FCT) through project Pylori E&LPS POCI/QUI/56393/2004, PhD grant SFRH/BD/19929/2004, by the Natural Sciences and Engineering Research Council of Canada (NSERC), and by the European Network of Research Infrastructures within the 6th Framework Programme of the EC (Contract # RII3-026145, EU-NMR). The authors further thank Dr. Adrien Favier (RALF-NMR facility, Grenoble - France) for conducting NMR experiments
In situ synthesis of magnetite nanoparticles in carrageenan gels
Magnetite nanoparticles have been successfully synthesized in the presence of carrageenan polysaccharides using
an in situ coprecipitation method. Iron coordination to the sulfate groups of the polysaccharide was confirmed by
FTIR. The polysaccharide type ( , é, or ì) and concentration have been varied and their effects on particle
morphology and chemical stability of the resultant nanocomposite investigated. The presence of carrageenan
induces the formation of smaller particles, compared to those formed in the absence of polymer, and their average
size depends on the nature and concentration of the polysaccharide used. The chemical stability of magnetite
nanoparticles toward oxidation was also seen to depend on biopolymer type with magnetite formed in Ă©-carrageenan
showing the highest chemical stability. A general tendency toward lower stability is observed as the polysaccharide
concentration is increased. It is suggested that magnetite chemical stability in the carrageenan composites is
determined by a fine balance between particle size and gel strength, the latter determining oxygen diffusion rates
through the medium
Interaction of Ruthenium(II)-dipyridophenazine Complexes with CT-DNA: Effects of the Polythioether Ancillary Ligands
The complexes [Ru([9]aneS3)(dppz)Cl]Cl 1 and [Ru([12]aneS4)(dppz)]Cl2 2 ([9]aneS3 = 1,4,7- trithiaciclononane and [12]aneS4 = 1,4,7,10-tetrathiaciclododecane) were synthesised and fully characterised. These complexes belong to a small family of dipyridophenazine complexes with non-polypyridyl ancillary
ligands . Interaction studies of these complexes with CT-DNA (UV/Vis titrations, steady-state emission and
thermal denaturation) revealed their high affinity for DNA . Intercalation constants determined by UV/Vis
titrations are of the same order of magnitude (106) as other dppz metallointercalators, namely
[Ru(II)(bpy)2dppz]S2+. Differences between l and2 were identified by steady-state emission and thermal denaturation studies . Emission results are in accordance with structural data, which indicate how geometric
distortions and different donor and/or acceptor ligand abilities affect luminescence. The possibility of noncovalent
interactions between ancillary ligands and nucleobases by van der Waals contacts and H-bridges is
discussed . Furthermore, complex l undergoes aquation under intra-cellular conditions and an equilibrium
with the aquated form l' is attained . This behaviour may increase the diversity of available interaction
modes
Endo- and exometabolome crosstalk in mesenchymal stem cells undergoing osteogenic differentiation
This paper describes, for the first time to our knowledge, a lipidome and exometabolome characterization of osteogenic differentiation for human adipose tissue stem cells (hAMSCs) using nuclear magnetic resonance (NMR) spectroscopy. The holistic nature of NMR enabled the time-course evolution of cholesterol, mono- and polyunsaturated fatty acids (including ω-6 and ω-3 fatty acids), several phospholipids (phosphatidylcholine, phosphatidylethanolamine, sphingomyelins, and plasmalogens), and mono- and triglycerides to be followed. Lipid changes occurred almost exclusively between days 1 and 7, followed by a tendency for lipidome stabilization after day 7. On average, phospholipids and longer and more unsaturated fatty acids increased up to day 7, probably related to plasma membrane fluidity. Articulation of lipidome changes with previously reported polar endometabolome profiling and with exometabolome changes reported here in the same cells, enabled important correlations to be established during hAMSC osteogenic differentiation. Our results supported hypotheses related to the dynamics of membrane remodelling, anti-oxidative mechanisms, protein synthesis, and energy metabolism. Importantly, the observation of specific up-taken or excreted metabolites paves the way for the identification of potential osteoinductive metabolites useful for optimized osteogenic protocols.publishe
- …