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Abstract

A physico-chemical characterization of blended membranes composed by chitosan and soy protein has been carried out in order to
probe the interactions that allow membranes to be formed from these biopolymer mixtures. These membranes are developed aiming at
applications in wound healing and skin tissue engineering scaffolding. The structural features of chitosan/soy blended membranes were
investigated by means of solid state carbon nuclear magnetic resonance (NMR), infrared spectroscopy (FTIR), contact angle, and atomic
force microscopy. FTIR investigations suggested that chitosan and soy may have participated in a specific intermolecular interaction.
The proton spin–lattice relaxation experiments in the rotating frame on blended membranes indicated that independently of the prep-
aration conditions, the blend components are not completely miscible possibly due to a weak polymer–protein interaction. It was also
shown that the blended systems showed a rougher surface morphology which was dependent of soy content in the blend system.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Over the last decade, membranes obtained by combining
proteins (e.g. soy protein, collagen, and gelatin) with a natu-
ral polymer (e.g. cellulose, chitosan) have been developed in
an attempt to supply the high demand for new materials for
skin repair as wound dressings in the treatment of wounds
caused by burns (Azad, Sermsintham, Chandrkrachang, &
Stevens, 2004; Jeschke, Sandmann, Schubert, & Klein,
2005; Silva, Santos, Coutinho, Mano, & Reis, 2005). The
presence of a protein in a polysaccharide–protein blend
may improve the cell adhesion response of the resultant
material due the presence of more protein-binding sites

(Silva et al., 2005). However, mixtures of protein and poly-
saccharide are often unstable, which leads to separation into
two phases (Bourriot, Garnier, & Doublier, 1999;
Tolstoguzov, 2000). If the biopolymers are incompatible,
i.e. they repel each other, thermodynamic phase separation
occurs, also called segregation or depletion interaction.
After phase separation, the mixture exhibits two phases:
one rich in protein and the other rich in polysaccharide (de
Kruif & Tuinier, 2001; Tolstoguzov, 2000). Bourriot et al.
(1999) observed that the phase separation occurred in differ-
ent casein–carrageenan systems at 50 �C. The phase separa-
tion leads to the formation of a casein-rich phase and a
k-carrageenan-rich phase. Some researchers support the evi-
dence of interactions between protein and polysaccharides at
fluid interfaces in conditions of limited thermodynamic com-
patibility between the protein and polysaccharide, i.e. above
the protein isoelectric point in the diluted concentration
region (Baeza, Carrera, Pilosof, & Rodriguez, 2004).

The production and successful use of materials obtained
from mixtures of protein–polysaccharide require that their
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properties, including intermolecular interactions, miscibil-
ity, morphology, and compatibility are known.

Soy protein, the major component of the soybean, is
biodegradable, environmentally friendly, and readily avail-
able from an abundant renewable resource. It had been
considered an interesting starting material for the develop-
ment of new materials ad devices for biotechnological and
biomedical utilization (Silva et al., 2005; Vaz, Graaf, Reis,
& Cunha, 2002; Vaz et al., 2005). However, soy protein
films are very brittle and hydroscopic (Rhim, Gennadios,
Handa, Weller, & Hanna, 2000). To overcome this limita-
tion, soy protein has been blended with other proteins
(Silva, Vaz, Coutinho, Cunha, & Reis, 2003) or polysac-
charides (Silva, Elvira, Mano, San Roman, & Reis, 2004;
Silva et al., 2005; Tang, Du, Zheng, & Fan, 2003) and this
has been shown to improve some of the resultant
properties, such as mechanical and water vapour barrier
of protein films.

Chitosan-based materials have been used for a wide
range of biomedical applications (Mi et al., 2001; Suh
& Matthew, 2000; Silva et al., 2004; Silva et al., 2005;
Tuzlakoglu, Alves, Mano, & Reis, 2004). Chemically,
chitosan is a natural polymer, which contains b-1-4
linked 2-amino-2-deoxy-D-glucopyranose repeat units
and is readily obtained by the N-deacetylation of chitin,
a naturally abundant polysaccharide (Azad et al., 2004;
Mi et al., 2001). This polymer is soluble in low pH
(pH < 6.5), and insoluble in a neutral and alkaline med-
ium. In an aqueous acid medium, the amine group of
chitosan is protonated, the polymer behaves like cationic
polyelectrolyte (Mi et al., 2001). Previous studies (Hat-
tori, Numamoto, Kobayashi, & Takahashi, 2000; Silva,
Lima, Pinheiro, Goés, & Figueiro, 2001; Silva et al.,
2004; Silva et al., 2005) have shown that chitosan can
interact with proteins to form insoluble complexes and
biofilms. For example, the presence of chitosan has been
shown to increase the thermal stability of collagen films,
probably due to an increase in the denaturation temper-
ature of collagen–chitosan films over that of collagen
alone (Silva et al., 2001). It has also been shown that
chitosan will form covalent complexes with b-lactoglobu-
lin (Hattori et al., 2000) through a Maillard type reac-
tion. The results of a previous study (Silva et al., 2005)
demonstrate that the combination of chitosan with a col-
loidal suspension formed from soy protein, in a form of
blended membranes exhibit different degradation patterns
and improved cellular adhesion with respect to pure
chitosan. The results indicate that the characteristics of
this blend system are dependent on the composition of
the blend, as well as the interaction between chitosan
and the soy protein. However, the way in which chitosan
and soy interact has not been fully studied. Therefore the
aim of this work is to analyze the miscibility and the
morphological aspects of chitosan/soy blended mem-
branes, using measurements of proton spin–lattice relax-
ation times by solid state carbon nuclear magnetic
resonance (13C CP/MAS NMR), Fourier transform

infrared spectroscopy (FTIR), contact angle measure-
ments, atomic force microscopy (AFM), and scanning
electron microscopy (SEM).

2. Experimental

2.1. Materials and samples preparation

Chitosan (CHT, Sigma) with ca. 85% deacetylation was
used. Soy protein isolate was provided by Loders Crock-
laan (The Netherlands). All other reagents were analytical
grade and used as received.

Chitosan/soy protein blended membranes (CS) (average
thickness from 40 to 84 lm) were prepared by solvent cast-
ing, as described previously (Silva et al., 2005). Briefly,
chitosan flakes were dissolved in an aqueous acetic acid
2% (v/v) solution at a concentration of 1% (w/v). A soy
suspension, 1% (w/v), was prepared by slowly suspending
the soy protein powder, under constant stirring, in distilled
water with glycerol (water/glycerol (10% w/v)). After
adjusting the pH to 8.0 ± 0.3 with 1 M sodium hydroxide,
the dispersion was heated in a water bath at 50 �C for
30 min. The two solutions were then mixed at different
ratios, namely CS75, CS50, and CS25 corresponding to
75/25, 50/50, and 25/75 w/w (chitosan/soy). After homog-
enization, the solutions were cast into Petri dishes and
dried at room temperature.

2.2. Fourier transform infrared with attenuated total

reflection (FTIR–ATR)

Surface changes on membranes were assessed by
FTIR–ATR spectroscopy (Unican Mattson 7000 FTIR
spectrometer). All spectra were an average of 64 scans at
a resolution of 4 cm�1.

2.3. Solid state nuclear magnetic resonance (NMR)

The solid state NMR spectra were recorded on Bruker
DRX spectrometers operating at a 1H frequencies of 400
and 500 MHz. Proton spin–lattice relaxation time (T H

1 ) val-
ues were determined using a 1H–13C cross-polarization
(CP) inversion recovery sequence (Zhong & MI, 1999)
and by fitting the 13C peak intensities to a single
exponential.

2.4. Contact angle measurements

The surface properties of the membranes were assessed
by means of static contact angle (h) measurements using
the sessile drop method with ultra-pure distilled water
(polar) and diiodomethane (non-polar) (OCA equipment,
Germany and SCA-20 software). Six measurements were
carried out for each sample. The presented data were calcu-
lated using the final averaged values. The polarity of the
surface as well as the surface tension was calculated using
the Owens–Wendt equation.
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2.5. Scanning electron microscopy

SEM images of samples coated with gold were obtained
at 10 kV on a Leica Cambridge S-360 microscope equipped
with a LINK eXLII X-ray energy dispersion spectrometer
for silicon microanalysis.

2.6. Atomic force microscopy

The samples were measured on at least three spots using
TappingMode� with a MultiMode connected to a Nano-
Scope, both supplied from Veeco, USA, with non-contact-
ing silicon nanoprobes (ca. 300 kHz, setpoint 2–3 V) from
Nanosensors, Switzerland. All images (10 lm wide) were
fitted to a plane using the 3rd degree flatten procedure
included in the NanoScope software version 4.43r8. The
surface roughness was calculated as Sq (root mean square
from average flat surface) and Sa (average absolute dis-
tance from average flat surface). The values are presented
as mean (standard deviation).

3. Results and discussion

Blend solutions of chitosan and soy protein prepared at
different ratios appeared to be homogeneous at a macro-
scopic level. A mixed biopolymer system is thermodynam-
ically unstable, and a phase separation may not be
observed on the experimental time scale because of kinetic
energy barriers associated with the restricted movement of
molecules through biopolymer networks (Bryant & McCle-
ments, 2000).

After casting, the as-prepared membranes presented a
yellowish color. In addition, it was found that the blended
membranes became brittle with increasing soy protein con-
tent. Cho et al. (Cho & Rhee, 2002) reported that films
formed from purely protein tend to be brittle, and plasticiz-
ers should be added to overcome the brittleness of films. As
expected, the SEM images of the CS blended membranes
showed a rougher surface morphology than the pure
chitosan membrane (Fig. 1). Additionally, the AFM
images (Fig. 2) show that the morphology of the blended

Fig. 1. SEM micrographs of chitosan membrane (a), soy protein membrane (b), CS75 (c), CS50 (d), and CS25 (e). The inset pictures present a higher
magnification of the membranes surfaces. (CS75, CS50, and CS25 corresponding to 75/25, 50/50, and 25/75 wt% chitosan/soy).
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membranes appear as a dispersion of one polymer in the
matrix of the other, as it is commonly found in heteroge-
neous blends (Koning, van Duin, Pagnoulle, & Jerome,

1998). From AFM measurements it was noted that the sur-
face roughness increased with increasing soy protein con-
tent from 11.8 ± 2.8 nm (CS75) to 18.8 ± 6.4 nm (CS25),

Fig. 2. AFM images of membranes: chitosan membranes (CHT), CS75, CS50, CS25 and soy protein membrane. (CS75, CS50, and CS25 corresponding to
75/25, 50/50, and 25/75 wt% chitosan/soy.)
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in comparison to the roughness of soy protein
(35.5 ± 4.5 nm) and chitosan (1.8 ± 0.9 nm) membrane
alone, in accordance with the SEM results. Soy (**) and
chitosan (*) alone were significantly different from all other
samples. In contrast, considering experimental error, only
the CS25–CS75 pair shows a significant difference.

The measured contact angles and the calculated surface
energy of the prepared membranes are summarized in
Table 1. It can be seen from this data that the soy protein
films are more hydrophilic than the chitosan membranes.
As expected, the blending of chitosan with the soy protein
resulted in a decrease in the values of the water contact
angles of the blended membranes with an increase in the
soy protein ratio. The surface energy (c) of CS blended
membranes increases in comparison to pure chitosan, as
a result of the mixing of chitosan and soy protein in these
blended system. However, no significant changes were seen
for the non-polar and polar components of the surface
energy.

The FTIR–ATR spectra of chitosan, soy protein, and
blended membranes are shown in Fig. 3. The ATR analysis

of membranes was based on the identification of bands
related to the functional groups present in chitosan and
soybean, among others (Pawlak & Mucha, 2003; Subirade,
Kelly, Gueguen, & Pezolet, 1998). The main characteristics
absorption bands of chitosan appear at 1650 cm�1 (C@O
stretching), 1584 cm�1 (–NH angular deformation), and
1150–1040 cm�1 (–C–O–C– in glycosidic linkage) (Pawlak
& Mucha, 2003). The soy protein spectrum showed an
amide I band at 1632 cm�1 and a amide II band at
1536 cm�1 (Subirade et al., 1998). The amide I can be com-
posed of several overlapping components due to various
protein segments with different secondary structures (Subi-
rade et al., 1998). As can be seen in spectra of the blended
membranes, the characteristic absorptions bands of both
chitosan and soy protein appears in proportion to the ratio
between the components of the blend. As a result, the
absorbance of NH and CO deformation bands in the range
1580–1490 and 1700–1630 cm�1, respectively, increase with
the increase in soy content of the blend. A small displace-
ment of these bands to lower wave-numbers (NH from
1584 to 1536 cm�1 and CO from 1650 to 1630 cm�1) with
respect to pure chitosan was also noted. These shifts sug-
gest that there may be a specific chemical interaction occur-
ring between chitosan and soy.

Fig. 4 shows the 13C CP/MAS NMR spectra of chito-
san, soy protein and their blends. Comparing the 13C
CP/MAS NMR spectra of chitosan and soy protein it
was possible to identify a characteristic 13C peak for the
polysaccharide at 104 ppm (C1 ring carbon) and for the
protein at 172 ppm (backbone carbonyl group) (Cervera
et al., 2004; Mizuno, Mitsuiki, Motoki, Ebisawa, & Suzuki,
2000). These resonances are distinct from one another and
can be used to probe the components of the membrane.
Chitosan has a very weak peak at around 175 ppm from
the acetyl group carbonyl carbon which does not interfere
with the soy carbonyl resonance (Fig. 4c). The 13C peak at
104 ppm in the soy spectra (Fig. 4b) is a spinning side band.
To examine the miscibility of the components of chitosan/
soy protein blended membranes at length scales of the
order of nm, the proton spin–lattice relaxation times in
the rotating frame, T1q(1H), were measured. The results
are summarized in Table 2. If there is intimate mixing of
the polysaccharide and protein molecules the T1q(1H)
values will be equal. If, however, the polysaccharide/pro-
tein zones are larger than approximately 20 nm (i.e. physi-
cally separated) then their relaxation times will differ. It is
clear that the CS50 T1q(1H) values for the protein and poly-
saccharide that are clearly different. Therefore it appears

Table 1
Contact angles (h) and surface energy (c) of chitosan, soy protein, and their blended membranes

Membrane hWater (�) hDiiodomethane (�) cd (mN m�1) cp (mN m�1) c (mN m�1)

CHT 103.1 ± 3.2 61.3 ± 0.5 27.4 ± 0.1 0.4 ± 0.1 27.8 ± 0.2
CS75 92.4 ± 2.8 61.7 ± 2.4 24.7 ± 0.1 2.1 ± 0.0 26.8 ± 0.1
CS50 88.2 ± 2.0 55.3 ± 2.4 29.2 ± 0.1 2.0 ± 0.0 31.2 ± 0.1
CS25 75.2 ± 3.8 53.1 ± 1.8 26.1 ± 0.1 8.7 ± 0.06 34.8 ± 0.1
SOY 67.6 ± 4.2 63.5 ± 1.9 19.4 ± 0.1 14.5 ± 0.2 33.9 ± 0.3

Fig. 3. FTIR–ATR of the CS blended membranes. (CS75, CS50, and
CS25 corresponding to 75/25, 50/50, and 25/75 wt% chitosan/soy.)
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that the blend components (at a CS50 ratio), independent
of the preparation conditions, are not miscible, possibly
as a result of a weak chitosan–protein interaction. How-
ever, anomalous behavior has been seen before for water
absorption and degradation in CS50 blends (Silva et al.,
2005) and these results may be further indication of this
phenomenon. Even so, the T1q(1H) value for the chitosan
component is quite different from pure chitosan therefore
the dynamic characteristics of chitosan in the CS50 blend
must be significantly different.

On the other hand, the CS75 and CS25 samples have
T1q(1H) values for each component that are that same
(within experimental error, Table 2). Therefore, it appears
that these samples (CS75 and CS25) may have protein and
polysaccharide regions that are miscible. However, it is
possible that as the percentage of one of the components
is low the blends may be immiscible but due to the small
physical size of one of the component pools spin diffusion
is occurring. The lower T1q(1H) values of the CS25 blend
compared to the CS75 blend, however, imply that the
dynamic characteristics for both biopolymers are different
in the two blends and that the degree of homogeneity of
the CS25 blend is higher than of the CS75. This is most
probably due to better interaction of the soy protein-rich
phase with the chitosan phase in the CS25 blend.

4. Conclusions

A physico-chemical characterization of chitosan/soy
protein blends has been carried out in order to probe
existing interactions, and the ultra-structure of mem-
branes containing different amounts of the two biopoly-
mers. The use of SEM and AFM indicated that the
surface morphology of the membrane blends increased
in roughness as the amount of soy protein increased, sug-
gesting increasing heterogeneity. The surface energy of the
blended membranes was found to increase when com-
pared to the separate constituents and was highest for
the CS25 blend. The source and extent of the interaction
between the polysaccharide and protein constituents of
the blends was probed using FTIR and NMR. The shift
in the NH and C@O bands in the FTIR spectra of the
blends compared to pure chitosan suggests a weak inter-
action is occurring between the two phases. The results
from the NMR relaxation studies suggest that there is
probably no intimate mixing for CS75 and CS50 although
the lower T1q(1H) values for the CS25 blend suggests that
this blend may be the most homogeneous and that the
biopolymers have dynamic characteristics different from
the isolated components.
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