77 research outputs found

    Simulations of eccentric disks in close binary systems

    Full text link
    We study the development of finite eccentricity in accretion disks in close binary systems using a two-dimensional grid-based numerical scheme. We perform detailed parameter studies to explore the dependence on viscosity, disk aspect ratio, the inclusion of a mass-transfer stream and the role of the boundary conditions. We consider mass ratios 0.05<q<0.3 appropriate to superoutbursting cataclysmic binary systems. Instability to the formation of a precessing eccentric disk that attains a quasi-steady state with mean eccentricity in the range 0.3-0.5 occurs readily. The shortest growth times are ~15 binary orbits for the largest viscosities and the instability mechanism is for the most part consistent with the mode-coupling mechanism associated with the 3:1 resonance proposed by Lubow. However, the results are sensitive to the treatment of the inner boundary and to the incorporation of the mass-transfer stream. In the presence of a stream we found a critical viscosity below which the disk remains circular. Incorporation of a mass-transfer stream tends to impart stability for small enough viscosity (or, equivalently, mass-transfer rate through the disk) and does assist in obtaining a prograde precession rate that is in agreement with observations. For the larger q the location of the 3:1 resonance is pushed outwards towards the Roche lobe where higher-order mode couplings and nonlinearity occur. It is likely that three-dimensional simulations that properly resolve the disk's vertical structure are required to make significant progress in this case.Comment: 19 pages, 27 Figures, accepted by A&

    Global Development and Climate Change: A Game Theory Approach

    Get PDF
    The increasing concern with climate change is one of the main issues of our time, and thus we aim to theoretically and mathematically analyse its causes. However our approach follows a different stream of thought, presenting the reasoning and decision-making processes between technical and moral solutions. We have resorted to game theory models in order to demonstrate cooperative and non-cooperative scenarios, ranging from the traditional to the evolutionary within game theory. In doing so we are able to glimpse the development of modern society and a paradigm shift regarding human control over nature and to what extent it is harmful to the sustainability of our environment and the survival of future generations. Merging different fields of knowledge, we present a theoretical-philosophical approach, combined with empirical-mathematical solutions taking into account the agent-based behaviour guided blindly by instrumental rationality

    A GIS Model Predicting Potential Distributions of a Lineage: A Test Case on Hermit Spiders (Nephilidae: Nephilengys)

    Get PDF
    BACKGROUND: Although numerous studies model species distributions, these models are almost exclusively on single species, while studies of evolutionary lineages are preferred as they by definition study closely related species with shared history and ecology. Hermit spiders, genus Nephilengys, represent an ecologically important but relatively species-poor lineage with a globally allopatric distribution. Here, we model Nephilengys global habitat suitability based on known localities and four ecological parameters. METHODOLOGY/PRINCIPAL FINDINGS: We geo-referenced 751 localities for the four most studied Nephilengys species: N. cruentata (Africa, New World), N. livida (Madagascar), N. malabarensis (S-SE Asia), and N. papuana (Australasia). For each locality we overlaid four ecological parameters: elevation, annual mean temperature, annual mean precipitation, and land cover. We used linear backward regression within ArcGIS to select two best fit parameters per species model, and ModelBuilder to map areas of high, moderate and low habitat suitability for each species within its directional distribution. For Nephilengys cruentata suitable habitats are mid elevation tropics within Africa (natural range), a large part of Brazil and the Guianas (area of synanthropic spread), and even North Africa, Mediterranean, and Arabia. Nephilengys livida is confined to its known range with suitable habitats being mid-elevation natural and cultivated lands. Nephilengys malabarensis, however, ranges across the Equator throughout Asia where the model predicts many areas of high ecological suitability in the wet tropics. Its directional distribution suggests the species may potentially spread eastwards to New Guinea where the suitable areas of N. malabarensis largely surpass those of the native N. papuana, a species that prefers dry forests of Australian (sub)tropics. CONCLUSIONS: Our model is a customizable GIS tool intended to predict current and future potential distributions of globally distributed terrestrial lineages. Its predictive potential may be tested in foreseeing species distribution shifts due to habitat destruction and global climate change

    A new era for understanding amyloid structures and disease

    Get PDF
    The aggregation of proteins into amyloid fibrils and their deposition into plaques and intracellular inclusions is the hallmark of amyloid disease. The accumulation and deposition of amyloid fibrils, collectively known as amyloidosis, is associated with many pathological conditions that can be associated with ageing, such as Alzheimer disease, Parkinson disease, type II diabetes and dialysis-related amyloidosis. However, elucidation of the atomic structure of amyloid fibrils formed from their intact protein precursors and how fibril formation relates to disease has remained elusive. Recent advances in structural biology techniques, including cryo-electron microscopy and solid-state NMR spectroscopy, have finally broken this impasse. The first near-atomic-resolution structures of amyloid fibrils formed in vitro, seeded from plaque material and analysed directly ex vivo are now available. The results reveal cross-β structures that are far more intricate than anticipated. Here, we describe these structures, highlighting their similarities and differences, and the basis for their toxicity. We discuss how amyloid structure may affect the ability of fibrils to spread to different sites in the cell and between organisms in a prion-like manner, along with their roles in disease. These molecular insights will aid in understanding the development and spread of amyloid diseases and are inspiring new strategies for therapeutic intervention

    Sustained phosphorylation of tyrosine hydroxylase at serine 40 in vivo

    Full text link

    Using data from location based social networks for urban activity clustering

    No full text
    Understanding the spatial and temporal aspects of activities in urban regions is one of the key challenges for the emerging fields of urban computing and emergency management as it provides indispensable insights on the quality of services in urban environments and helps to describe the socio-dynamics of urban districts. This work presents a novel approach to obtain this highly valuable knowledge. We hereby propose a segmentation of a city into clusters based on activity profiles using data from a Location Based Social Network (LBSN). In our approach, a segment is represented by different locations sharing the same temporal distribution of check-ins. We reveal how to describe the topic of the determined segments by modelling the difference to the overall temporal distribution of check-ins of the region. Furthermore, a technique from multidimensional scaling is adopted to compute a classification of all segments and visualize the results. The proposed method was successf ully applied to Foursquare data recorded from May to October 2012 in the region of Cologne (Germany) and returns clear patterns separating areas known for different activities like nightlife or daily work. Finally, we discuss different aspects related to the use of data from LBSNs
    • …
    corecore