7 research outputs found

    Protocol for the ProFHER (PROximal Fracture of the Humerus: Evaluation by Randomisation) trial: a pragmatic multi-centre randomised controlled trial of surgical versus non-surgical treatment for proximal fracture of the humerus in adults

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Proximal humeral fractures, which occur mainly in older adults, account for approximately 4 to 5% of all fractures. Approximately 40% of these fractures are displaced fractures involving the surgical neck. Management of this group of fractures is often challenging and the outcome is frequently unsatisfactory. In particular it is not clear whether surgery gives better outcomes than non-surgical management. Currently there is much variation in the use of surgery and a lack of good quality evidence to inform this decision.</p> <p>Methods/Design</p> <p>We aim to undertake a pragmatic UK-based multi-centre randomised controlled trial evaluating the effectiveness and cost-effectiveness of surgical versus standard non-surgical treatment for adults with an acute closed displaced fracture of the proximal humerus with involvement of the surgical neck. The choice of surgical intervention is left to the surgeon, who must use techniques that they are fully experienced with. This will avoid 'learning curve' problems. We will promote good standards of non-surgical care, similarly insisting on care-provider competence, and emphasize the need for comparable provision of rehabilitation for both groups of patients.</p> <p>We aim to recruit 250 patients from a minimum of 18 NHS trauma centres throughout the UK. These patients will be followed-up for 2 years. The primary outcome is the Oxford Shoulder Score, which will be collected via questionnaires completed by the trial participants at 6, 12 and 24 months. This is a 12-item condition-specific questionnaire providing a total score based on the person's subjective assessment of pain and activities of daily living impairment. We will also collect data for other outcomes, including general health measures and complications, and for an economic evaluation. Additionally, we plan a systematic collection of reasons for non-inclusion of eligible patients who were not recruited into the trial, and their baseline characteristics, treatment preferences and intended treatment.</p> <p>Discussion</p> <p>This article presents the protocol for a multi-centre randomised controlled trial. It gives extensive details of, and the basis for, the chosen methods, and describes the key measures taken to avoid bias and to ensure validity.</p> <p>Trial Registration</p> <p>Current Controlled Trials ISRCTN50850043</p

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    No full text
    Altres ajuts: Department of Health and Social Care (DHSC); Illumina; LifeArc; Medical Research Council (MRC); UKRI; Sepsis Research (the Fiona Elizabeth Agnew Trust); the Intensive Care Society, Wellcome Trust Senior Research Fellowship (223164/Z/21/Z); BBSRC Institute Program Support Grant to the Roslin Institute (BBS/E/D/20002172, BBS/E/D/10002070, BBS/E/D/30002275); UKRI grants (MC_PC_20004, MC_PC_19025, MC_PC_1905, MRNO2995X/1); UK Research and Innovation (MC_PC_20029); the Wellcome PhD training fellowship for clinicians (204979/Z/16/Z); the Edinburgh Clinical Academic Track (ECAT) programme; the National Institute for Health Research, the Wellcome Trust; the MRC; Cancer Research UK; the DHSC; NHS England; the Smilow family; the National Center for Advancing Translational Sciences of the National Institutes of Health (CTSA award number UL1TR001878); the Perelman School of Medicine at the University of Pennsylvania; National Institute on Aging (NIA U01AG009740); the National Institute on Aging (RC2 AG036495, RC4 AG039029); the Common Fund of the Office of the Director of the National Institutes of Health; NCI; NHGRI; NHLBI; NIDA; NIMH; NINDS.Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care or hospitalization after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes-including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)-in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    corecore