20 research outputs found

    MULTI OPTICAL TRANSITION RADIATION SYSTEM FOR ATF2 ∗

    Get PDF
    In this paper we describe the design, installation and first calibration tests of a Multi Optical Transition Radiation System in the beam diagnostic section of the Extraction (EXT) line of ATF2, close to the multi wire scanner system. This system will be a valuable tool for measuring beam sizes and emittances coming from the ATF Damping Ring. With an optical resolution of about 2μm an original OTR design (OTR1X) located after the septum at the entrance of the EXT line demonstrated the ability to measure a5.5μm beam size in one beam pulse and to take many fast measurements. This gives the OTR the ability to measure the beam emittance with high statistics, giving a low error and a good understanding of emittance jitter. Furthermore the nearby wire scanners will be a definitive test of the OTR as a beam emittance diagnostic device. The multi-OTR system design proposed here is based on the existing OTR1X

    Experimental validation of a novel compact focusing scheme for future energy-frontier linear lepton colliders.

    Get PDF
    A novel scheme for the focusing of high-energy leptons in future linear colliders was proposed in 2001 [P. Raimondi and A. Seryi, Phys. Rev. Lett. 86, 3779 (2001)]. This scheme has many advantageous properties over previously studied focusing schemes, including being significantly shorter for a given energy and having a significantly better energy bandwidth. Experimental results from the ATF2 accelerator at KEK are presented that validate the operating principle of such a scheme by demonstrating the demagnification of a 1.3 GeVelectron beam down to below 65 nm in height using an energy-scaled version of the compact focusing optics designed for the ILC collider

    The Compact Linear Collider (CLIC) - 2018 Summary Report

    Get PDF

    The Compact Linear Collider (CLIC) - 2018 Summary Report

    Get PDF
    The Compact Linear Collider (CLIC) is a TeV-scale high-luminosity linear e+ee^+e^- collider under development at CERN. Following the CLIC conceptual design published in 2012, this report provides an overview of the CLIC project, its current status, and future developments. It presents the CLIC physics potential and reports on design, technology, and implementation aspects of the accelerator and the detector. CLIC is foreseen to be built and operated in stages, at centre-of-mass energies of 380 GeV, 1.5 TeV and 3 TeV, respectively. CLIC uses a two-beam acceleration scheme, in which 12 GHz accelerating structures are powered via a high-current drive beam. For the first stage, an alternative with X-band klystron powering is also considered. CLIC accelerator optimisation, technical developments and system tests have resulted in an increased energy efficiency (power around 170 MW) for the 380 GeV stage, together with a reduced cost estimate at the level of 6 billion CHF. The detector concept has been refined using improved software tools. Significant progress has been made on detector technology developments for the tracking and calorimetry systems. A wide range of CLIC physics studies has been conducted, both through full detector simulations and parametric studies, together providing a broad overview of the CLIC physics potential. Each of the three energy stages adds cornerstones of the full CLIC physics programme, such as Higgs width and couplings, top-quark properties, Higgs self-coupling, direct searches, and many precision electroweak measurements. The interpretation of the combined results gives crucial and accurate insight into new physics, largely complementary to LHC and HL-LHC. The construction of the first CLIC energy stage could start by 2026. First beams would be available by 2035, marking the beginning of a broad CLIC physics programme spanning 25-30 years

    Progress on low emittance tuning for the CLIC Damping Rings

    No full text
    In the frame of the CLIC main Damping Ring a study on the sensitivity of the lattice to different sources of misalignment is presented. The minimum equilibrium emittance is simulated and analytically estimated under dipole and quadrupole rolls, and quadrupole and sextupole vertical offsets. The result of this study establishes alignment tolerances to preserve the vertical emittance below the design value (1 pmrad). Non-linear dynamics studies have been done to determine the dynamic aperture in the presence of misalignments

    Transverse beam jitter propagation in multi-bunch operation at ATF2

    No full text
    Pulse-to-pulse orbit jitter, if not controlled, can drastically degrade the luminosity in future linear colliders. The second goal of the ATF2 project at the KEK accelerator test facility is to stabilise the vertical beam position down to approximately 5% of the nominal rms vertical beam size at the virtual Interaction Point (IP). This will require control of the orbit to better than 1 micrometre at the entrance of the ATF2 final focus system. In this paper, by means of computer simulations, we study the vertical jitter propagation along the ATF2 from the start of the extraction line to the IP. For this study pulse-to-pulse vertical jitter measurements using three stripline beam position monitors are used as initial inputs. This study is performed for the case of a bunch-train with three bunches, but could easily be extended for a larger number of bunches. The cases with and without intra-train orbit feedback correction in the extraction line of ATF2 are compared. Copyright © 2011 by IPAC'11/EPS-AG

    Nonlinear Optimization of CLIC DRS New Design with Variable Bends and High Field Wigglers

    No full text
    The new design of CLIC damping rings is based on longitudinal variable bends and high field superconducting wiggler magnets. It provides an ultra-low horizontal normalised emittance of 412 nm-rad at 2.86 GeV. In this paper, nonlinear beam dynamics of the new design of the damping ring (DR) with trapezium field profile bending magnets have been investigated in detail. Effects of the misalignment errors have been studied in the closed orbit and dynamic aperture

    Optics design of the High-Power Proton Synchrotron for LAGUNA-LBNO

    No full text
    The prospects for future high-power proton beams for producing neutrinos at CERN within the LAGUNA-LBNO study, include the design of a 2 MW High-Power Proton Synchrotron (HP-PS). In this paper, the optics design of the ring is reviewed, comprising Negative Momentum Compaction (NMC) arc cells and quadrupole triplet long straight sections, flexible enough to achieve the constraints imposed mainly by different beam transfer equipment and processes. A global tunability study is undertaken including aperture and magnet parameter considerations. Basic correction systems are specified and their impact to beam dynamics including dynamic aperture is finally evaluated
    corecore