16 research outputs found

    Environmental pollutant Cd2+ biphasically and differentially regulates myosin light chain kinase and phospholipid/Ca2+-dependent protein kinase

    Get PDF
    AbstractCd2+ was found to mimic effectively, potentiate and antagonize the stimulatory action of Ca2+ on myosin light chain kinase (MLCK) and phospholipid-sensitive Ca2+-dependent protein kinase (PL-Ca-PK, or protein kinase C). PL-Ca-PK, however, was slightly less sensitive to Cd2+ regulation than was MLCK. Cd2+ also biphasically regulates (i.e., stimulation followed by inhibition) phosphorylation, in the homogenates of the rat caudal artery, of myosin light chain and other endogenous proteins catalyzed by MLCK and PL-Ca-PK. The activation by Cd2+ of MLCK was inhibited by anticalmodulins (e.g., R-24571), whereas the inhibition by a higher Cd2+ concentration of MLCK and PL-Ca-PK was reversed by thiol agents (e.g., cysteine). The present findings may provide one mechanism underlying the vascular toxicity of Cd2+, a major environmental pollutant

    Autonomic nervous system dysfunction in children with severe tetanus: dissociation of cardiac and vascular sympathetic control

    No full text
    The medical records of ten pediatric patients with a clinical diagnosis of tetanus were reviewed retrospectively. The heart rate and blood pressure of all tetanus patients were measured noninvasively every hour during the first two weeks of hospitalization. Six of ten tetanus patients presented clinical evidence of sympathetic hyperactivity (group A) and were compared with a control group consisting of four children who required mechanical ventilation for diseases other than tetanus (group B). Heart rate and blood pressure simultaneously and progressively increased to a maximum by day 7. The increase over baseline was 43.70 ± 11.77 bpm (mean ± SD) for heart rate (P<0.01) and 38.60 ± 26.40 mmHg for blood pressure (P<0.01). These values were higher and significantly different from those of the control group (group B) at day 6, which had an average heart rate increase over baseline of 19.35 ± 12.26 bpm (P<0.05) and blood pressure of 10.24 ± 13.30 mmHg (P<0.05). By the end of the second week of hospitalization, in group A the increase of systolic blood pressure over baseline had diminished to 9.60 ± 15.37 mmHg (P<0.05), but the heart rate continued to be elevated (27.80 ± 33.92 bpm, P = NS), when compared to day 7 maximal values. The dissociation of these two cardiovascular variables at the end of the second week of hospitalization suggests the presence of asymmetric cardiac and vascular sympathetic control. One possible explanation for these observations is a selective and delayed action of tetanus toxin on the inhibitory neurons which control sympathetic outflow to the heart
    corecore