682 research outputs found

    Structure identification in complete rule-based fuzzy systems

    Full text link

    Direct Torque and Predictive Control Strategies in Nine-phase Electric Drives Using Virtual Voltage Vectors

    Get PDF
    One of the main distinctive features of multiphase machines is the appearance of new degrees of freedom ( - voltages/currents) that do not exist in their three-phase counterparts. As a direct consequence, control approaches that apply a single switching state during the sampling period cannot achieve zero average - voltage production. In direct torque control (DTC) this implies that - currents are not regulated, whereas in finite-control-set model predictive control (FCS-MPC) an enhanced - current regulation is feasible only at the expense of disturbing the flux/torque production. Aiming to avoid these shortcomings, this work makes use of the concept of synthetic/virtual voltage vectors (VVs) to nullify/limit the - voltage production in order to improve the current regulation in the secondary planes. Two strategies using two and four virtual voltage vectors (2-VV and 4-VV, respectively) are proposed and compared with the standard case that applies a single switching state. Since standard MPC has the capability to indirectly regulate - currents, the improvements with the inclusion of VVs are expected to be more significant in DTC strategies. Experimental results validate the proposed VVs and confirm the expectations through a detailed performance comparison of standard, 2-VV and 4-VV approaches for DTC and MPC strategies

    Surface abundances of light elements for a large sample of early B-type stars - IV. The magnesium abundance in 52 stars - a test of metallicity

    Full text link
    From high-resolution spectra a non-LTE analysis of the MgII 4481.2 A feature is implemented for 52 early and medium local B stars on the main sequence (MS). The influence of the neighbouring line AlIII 4479.9 A is considered. The magnesium abundance is determined; it is found that log e(Mg) = 7.67 +- 0.21 on average. It is shown that uncertainties in the microturbulent parameter Vt are the main source of errors in log e(Mg). When using 36 stars with the most reliable Vt values derived from OII and NII lines, we obtain the mean abundance log e(Mg) = 7.59 +- 0.15. The latter value is precisely confirmed for several hot B stars from an analysis of the MgII 7877 A weak line. The derived abundance log e(Mg) = 7.59 +- 0.15 is in excellent agreement with the solar magnesium abundance log e_sun(Mg) = 7.55 +- 0.02, as well as with the proto-Sun abundance log e_ps(Mg) = 7.62 +- 0.02. Thus, it is confirmed that the Sun and the B-type MS stars in our neighbourhood have the same metallicity.Comment: 9 pages, 6 figures. Has been accepted for publication at MNRA

    Fault-Tolerant Operation of Six-Phase Energy Conversion Systems With Parallel Machine-Side Converters

    Get PDF
    The fault tolerance provided by multiphase machines is one of the most attractive features for industry applications where a high degree of reliability is required. Aiming to take advantage of such postfault operating capability, some newly designed full-power energy conversion systems are selecting machines with more than three phases. Although the use of parallel converters is usual in high-power three-phase electrical drives, the fault tolerance of multiphase machines has been mainly considered with single supply from a multiphase converter. This study addresses the fault-tolerant capability of six-phase energy conversion systems supplied with parallel converters, deriving the current references and control strategy that need to be utilized to maximize torque/power production. Experimental results show that it is possible to increase the postfault rating of the system if some degree of imbalance in the current sharing between the two sets of threephase windings is permitted

    An equatorial ultra iron-poor star identified in BOSS

    Full text link
    We report the discovery of SDSS J131326.89-001941.4, an ultra iron-poor red giant star ([Fe/H] ~ -4.3) with a very high carbon abundance ([C/Fe]~ +2.5). This object is the fifth star in this rare class, and the combination of a fairly low effective temperature (Teff ~ 5300 K), which enhances line absorption, with its brightness (g=16.9), makes it possible to measure the abundances of calcium, carbon and iron using a low-resolution spectrum from the Sloan Digital Sky Survey. We examine the carbon and iron abundance ratios in this star and other similar objects in the light of predicted yields from metal-free massive stars, and conclude that they are consistent. By way of comparison, stars with similarly low iron abundances but lower carbon-to-iron ratios deviate from the theoretical predictions.Comment: 6 pages, 4 figures, accepted for publication in A&

    The Pristine survey II: a sample of bright stars observed with FEROS

    Full text link
    Extremely metal-poor (EMP) stars are old objects formed in the first Gyr of the Universe. They are rare and, to select them, the most successful strategy has been to build on large and low-resolution spectroscopic surveys. The combination of narrow- and broad band photometry provides a powerful and cheaper alternative to select metal-poor stars. The on-going Pristine Survey is adopting this strategy, conducting photometry with the CFHT MegaCam wide field imager and a narrow-band filter centred at 395.2 nm on the CaII-H and -K lines. In this paper we present the results of the spectroscopic follow-up conducted on a sample of 26 stars at the bright end of the magnitude range of the Survey (g<=15), using FEROS at the MPG/ESO 2.2 m telescope. From our chemical investigation on the sample, we conclude that this magnitude range is too bright to use the SDSS gri bands, which are typically saturated. Instead the Pristine photometry can be usefully combined with the APASS gri photometry to provide reliable metallicity estimates.Comment: AN accepte

    Constrained Model Predictive Control in Nine-phase Induction Motor Drives

    Get PDF
    The advent of powerful digital signal processors (DSPs) has recently permitted the real-time implementation of model predictive control (MPC) in high-performance electric drives. Nevertheless, the use of MPC together with multiphase systems is increasingly challenging as the number of phases gets higher. On the positive side, the redundancy provided by the extra phases also opens the possibility to further optimize the control action. This work describes the implementation of MPC for nine-phase drives using a three-step approach with an initial discarding of the switching states, a dynamic selection of the voltage vectors using hard constraints (HCs), and an improved performance including soft constraints (SCs). Experimental results confirm the ability of the proposed MPC to highly reduce the computational burden and switching frequency, while maintaining satisfactory steady-state and dynamic performance

    Searching for the signatures of terrestial planets in solar analogs

    Full text link
    We present a fully differential chemical abundance analysis using very high-resolution (R >~ 85,000) and very high signal-to-noise (S/N~800 on average) HARPS and UVES spectra of 7 solar twins and 95 solar analogs, 24 are planet hosts and 71 are stars without detected planets. The whole sample of solar analogs provide very accurate Galactic chemical evolution trends in the metalliciy range -0.3<[Fe/H]<0.5. Solar twins with and without planets show similar mean abundance ratios. We have also analysed a sub-sample of 28 solar analogs, 14 planet hosts and 14 stars without known planets, with spectra at S/N~850 on average, in the metallicity range 0.14<[Fe/H]<0.36 and find the same abundance pattern for both samples of stars with and without planets. This result does not depend on either the planet mass, from 7 Earth masses to 17.4 Jupiter masses, or the orbital period of the planets, from 3 to 4300 days. In addition, we have derived the slope of the abundance ratios as a function of the condensation temperature for each star and again find similar distributions of the slopes for both stars with and without planets. In particular, the peaks of these two distributions are placed at a similar value but with opposite sign as that expected from a possible signature of terrestial planets. In particular, two of the planetary systems in this sample, containing each of them a Super-Earth like planet, show slope values very close to these peaks which may suggest that these abundance patterns are not related to the presence of terrestial planets.Comment: Accepted for publication in The Astrophysical Journa

    Memory-based Model Predictive Control for Parameter Detuning in Multiphase Electric Machines

    Get PDF
    Model predictive control (MPC) is a popular control technique to regulate multiphase electric drives (ED). Despite the well-known advantages of MPC, it is sensitive to parameter detuning and lacks the capability to eliminate steady-state errors. The appearance of an offset between the reference and measured currents can significantly jeopardize the performance of the electric drive. This work suggests the use of a memory-based model predictive control (MB-MPC) that activates a compensation term when the parameter mismatch is detected. The suggested MB-MPC is universal for any multiphase machine if spatial harmonics are neglected since the proposed method does not consider any of the secondary x-y planes. Experimental results in two different rigs with six- and nine-phase induction motors prove this universality as well as its capability to eliminate current and speed offsets

    Application of a split-Cre system for high-capacity adenoviral vector amplification

    Get PDF
    Background and aims: High-capacity adenoviral vectors (HC-AdV) show extended DNA payload and stability of gene expression in vivo due to the absence of viral coding sequences. However, production requires methods to trans-complement viral proteins, usually through Helper Viruses (HV). The Cre/loxP system is frequently employed to remove the packaging signal in HV genomes, in order to avoid their encapsidation. However, chronic exposure to the Cre recombinase in packaging cells is detrimental. We have applied the dimerizable Cre system to overcome this limitation. Methods and results: Cre was split in two fragments devoid of recombinase function (N-terminal 244 and C-terminal 99 amino-acids). In one version of the system, interaction with both moieties was favored by rapamycin-dependent heterodimerization domains (DiCre). Other version contained only Cre sequences (oCre). We generated packaging cells and HVs expressing the complementary fragments and studied their performance for HC-AdV production. We found that both conformations avoided interference with the growth of packaging cells, and the oCre system was particularly suitable for HC-AdV amplification. Conclusions: The split-Cre system improves the performance of packaging cells and can reduce the time and cost of HC-AdV amplification up to 30% and 15%, respectively. This may contribute to the standardization of HC-AdV production
    • …
    corecore