80,981 research outputs found

    Amorphous-silicon module hot-spot testing

    Get PDF
    Hot spot heating occurs when cell short-circuit current is lower than string operating current. Amorphous cell hot spot are tested to develop the techniques required for performing reverse bias testing of amorphous cells. Also, to quantify the response of amorphous cells to reverse biasing. Guidelines are developed from testing for reducing hot spot susceptibility of amorphous modules and to develop a qualification test for hot spot testing of amorphous modules. It is concluded that amorphous cells undergo hot spot heating similarly to crystalline cells. Comparison of results obtained with submodules versus actual modules indicate heating levels lower in actual modules. Module design must address hot spot testing and hot spot qualification test conducted on modules showed no instabilities and minor cell erosion

    Are Stars with Planets Polluted?

    Get PDF
    We compare the metallicities of stars with radial velocity planets to the metallicity of a sample of field dwarfs. We confirm recent work indicating that the stars-with-planet sample as a whole is iron rich. However, the lowest mass stars tend to be iron poor, with several having [Fe/H]<-0.2, demonstrating that high metallicity is not required for the formation of short period Jupiter-mass planets. We show that the average [Fe/H] increases with increasing stellar mass (for masses below 1.25 solar masses) in both samples, but that the increase is much more rapid in the stars-with-planet sample. The variation of metallicity with stellar age also differs between the two samples. We examine possible selection effects related to variations in the sensitivity of radial velocity surveys with stellar mass and metallicity, and identify a color cutoff (B-V>0.48) that contributes to but does not explain the mass-metallicity trend in the stars-with-planets sample. We use Monte Carlo models to show that adding an average of 6.5 Earth masses of iron to each star can explain both the mass-metallicity and the age-metallicity relations of the stars-with-planets sample. However, for at least one star, HD 38529, there is good evidence that the bulk metallicity is high. We conclude that the observed metallicities and metallicity trends are the result of the interaction of three effects; accretion of about 6 Earth masses of iron rich material, selection effects, and in some cases, high intrinsic metallicity.Comment: 19 pages 11 figure

    Low-cost silicon solar array project environmental hail model for assessing risk to solar collectors

    Get PDF
    The probability of solar arrays being struck by hailstones of various sizes as a function of geographic location and service life was assessed. The study complements parallel studies of solar array sensitivity to hail damage, the final objective being an estimate of the most cost effective level for solar array hail protection

    UV-T-RH combined environmental testing

    Get PDF
    A combined environmental aging chamber was developed at the Jet Propulsion Laboratory (JPL). The chamber has an ultraviolet (UV) light source that can be varied between 1 to 2 suns, temperature control from -40 to +175 C, and adjustable humidity. Results from two initial aging experiments (Tedlar and amorphous silicon colar cells) were presented

    Neutrino Masses and Mixing: Where We Stand and Where We are Going

    Get PDF
    In this talk I review our present knowledge on neutrino masses and mixing as well as the expectations from near future experiments.Comment: 19 Pages, 11 figures. Review talk given at the 10th International Conference on Supersymmetry and Unification of Fundamental Interactions, SUSY02 (June 17-23, 2002, DESY, Hamburg

    Present Bounds on New Neutral Vector Resonances from Electroweak Gauge Boson Pair Production at the LHC

    Get PDF
    Several extensions of the Standard Model predict the existence of new neutral spin-1 resonances associated to the electroweak symmetry breaking sector. Using the data from ATLAS (with integrated luminosity of L=1.02 fb^{-1}) and CMS (with integrated luminosity of L=1.55 fb^{-1}) on the production of W+W- pairs through the process pp -> l^+ l^{\prime -} \sla{E}_T, we place model independent bounds on these new vector resonances masses, couplings and widths. Our analyses show that the present data excludes new neutral vector resonances with masses up to 1-2.3 TeV depending on their couplings and widths. We also demonstrate how to extend our analysis framework to different models working a specific example.Comment: 10 pages, 6 figure

    Non-reciprocal few-photon devices based on chiral waveguide-emitter couplings

    Full text link
    We demonstrate the possibility of designing efficient, non reciprocal few-photon devices by exploiting the chiral coupling between two waveguide modes and a single quantum emitter. We show how this system can induce non-reciprocal photon transport at the single-photon level and act as an optical diode. Afterwards, we also show how the same system shows a transistor-like behaviour for a two-photon input. The efficiency in both cases is shown to be large for feasible experimental implementations. Our results illustrate the potential of chiral waveguide-emitter couplings for applications in quantum circuitry.Comment: Mathematica notebook attached for calculation of detection probabilitie
    corecore