519 research outputs found

    Methodology for determine the moment of disconnection of patients of the mechanical ventilation using neural network

    Get PDF
    The process of weaning from mechanical ventilation is one of the challenges in intensive care units. In this paper 66 patients under extubation process (T-tube test) were studied: 33 patients with successful trials and 33 patients who failed to maintain spontaneous breathing and were reconnected. Each patient was characterized using 7 time series from respiratory signals, and for each serie was extracted 4 statistics data. Two types of Neural Networks were applied for discriminate between patients from the two groups: radial basis function and multilayer perceptron, getting better results with the second type of network.Postprint (published version

    Brachial plexus injury mimicking a spinal-cord injury.

    Get PDF
    Objective High-energy impact to the head, neck, and shoulder can result in cervical spine as well as brachial plexus injuries. Because cervical spine injuries are more common, this tends to be the initial focus for management. We present a case in which the initial magnetic resonance imaging (MRI) was somewhat misleading and a detailed neurological exam lead to the correct diagnosis.Clinical presentation A 19-year-old man presented to the hospital following a shoulder injury during football practice. The patient immediately complained of significant pain in his neck, shoulder, and right arm and the inability to move his right arm. He was stabilized in the field for a presumed cervical-spine injury and transported to the emergency department.Intervention Initial radiographic assessment (C-spine CT, right shoulder x-ray) showed no bony abnormality. MRI of the cervical-spine showed T2 signal change and cord swelling thought to be consistent with a cord contusion. With adequate pain control, a detailed neurological examination was possible and was consistent with an upper brachial plexus avulsion injury that was confirmed by CT myelogram. The patient failed to make significant neurological recovery and he underwent spinal accessory nerve grafting to the suprascapular nerve to restore shoulder abduction and external rotation, while the phrenic nerve was grafted to the musculocutaneous nerve to restore elbow flexion.Conclusion Cervical spinal-cord injuries and brachial plexus injuries can occur by the same high energy mechanisms and can occur simultaneously. As in this case, MRI findings can be misleading and a detailed physical examination is the key to diagnosis. However, this can be difficult in polytrauma patients with upper extremity injuries, head injuries or concomitant spinal-cord injury. Finally, prompt diagnosis and early surgical renerveration have been associated with better long-term recovery with certain types of injury

    Huertas urbanas para la seguridad alimentaria modelo de corresponsabilidad con la comunidad de la avenida del río en la ciudad de Pereira Colombia

    Get PDF
    La investigación realizada en la comuna avenida del río del municipio de Pereira Risaralda fue orientada a la transformación del entorno mediante huertas urbanas, adecuando espacios donde antes se disponían las basuras, a partir de procesos sociales pedagógicos y lúdicos de sensibilización, capacitación y empoderamiento de la comunidad, sumado a esfuerzos conjuntos con otras entidades que aportaron recursos mediante compromisos y convenios de cooperación, para la recuperación de saberes ancestrales; se realizaron mingas o prácticas comunitarias promoviendo la apropiación del espacio. Este proceso se llevó a cabo por medio de la aplicación del paradigma mixto con el método investigación acción participación (IAP), en las fases de diagnóstico, nivelación conceptual, planificación, desarrollo y seguimiento. Lo que permitió la suma de esfuerzos entre organizaciones, academia y comunidad de forma participativa para construir una ruta utilizando las huertas urbanas como alternativa para la seguridad y la soberanía alimentaria, al tiempo que se dio un manejo apropiado al paisaje, se fomentó la educación ambiental, recreativa, terapéutica y comunitaria, impactando positivamente sobre la economía, la salud y la nutrición de los habitantes y contribuyendo a la lucha contra el cambio climático.PregradoAdministrador(a) AmbientalCONTENIDO 1 RESUMEN.............................................................................................................................. 9 2 INTRODUCCIÓN................................................................................................................. 10 2.1 OBJETIVOS................................................................................................................... 11 2.2 Objetivo general ............................................................................................................. 11 2.3 Objetivos específicos...................................................................................................... 11 2.4 PLANTEAMIENTO DEL PROBLEMA ...................................................................... 11 2.5 JUSTIFICACIÓN........................................................................................................... 12 2.6 ANTECEDENTES HISTÓRICOS ................................................................................ 13 2.6.1 Historia de la agricultura precolombina 12000 a.C.-1498 d.C. .............................. 13 2.6.2 Cambios en la agricultura y posesión de tierras en Colombia 1492-1547.............. 14 2.6.3 De la conquista a la república de Colombia 1548-1900 ......................................... 14 2.6.4 Crisis de la mano de obra en Colombia 1900-1950................................................ 15 2.6.5 Cambios en la economía desde los cultivos 1951-2000 ......................................... 15 2.6.6 Mi Colombia 2001 -2022........................................................................................ 15 2.7 MARCO REFERENCIAL............................................................................................. 16 2.7.1 Marco normativo..................................................................................................... 16 2.7.2 Marco Geográfico ................................................................................................... 18 2.7.3 Marco teórico.......................................................................................................... 18 2.8 METODOLOGÍA .......................................................................................................... 21 2.8.1 Esquema proceso metodológico IAP aplicado al proyecto..................................... 21 2.8.2 Fases de la investigación......................................................................................... 22 2.8.3 Técnicas e instrumentos.......................................................................................... 23 3 DECLARACIONES DEL INVESTIGADOR ...................................................................... 25 3.1 Declaración ética ............................................................................................................ 25 3.2 IMPACTOS ESPERADOS............................................................................................ 25 3.2.1 Impacto ambiental................................................................................................... 25 3.2.2 Impacto social ......................................................................................................... 25 4 RESULTADOS ..................................................................................................................... 26 4.1 Fase de Contextualización.............................................................................................. 26 6 4.2 Fase Descriptiva. ............................................................................................................ 27 4.2.1 Árbol de problemas................................................................................................. 29 4.3 Fase Conceptual. ............................................................................................................ 30 4.3.1 Sesión 1................................................................................................................... 30 4.3.2 Sesión 2................................................................................................................... 31 4.3.3 Sesión 3................................................................................................................... 32 4.3.4 Sesión 4................................................................................................................... 33 4.3.5 Sesión 5................................................................................................................... 34 4.3.6 Sesión 6................................................................................................................... 37 4.4 Fase Planificación. ......................................................................................................... 39 4.4.1 Plan de acción ......................................................................................................... 41 4.5 Fase Desarrollo y Seguimiento. ..................................................................................... 43 5 DISCUSIÓN Y ANÁLISIS................................................................................................... 48 6 CONCLUSIONES Y RECOMENDACIONES .................................................................... 51 7 REFERENCIAS .................................................................................................................... 53 8 ANEXOS:.............................................................................................................................. 5

    Analysis of the cardiorespiratory pattern of patients undergoing weaning using artificial intelligence

    Get PDF
    The optimal extubating moment is still a challenge in clinical practice. Respiratory pattern variability analysis in patients assisted through mechanical ventilation to identify this optimal moment could contribute to this process. This work proposes the analysis of this variability using several time series obtained from the respiratory flow and electrocardiogram signals, applying techniques based on artificial intelligence. 154 patients undergoing the extubating process were classified in three groups: successful group, patients who failed during weaning process, and patients who after extubating failed before 48 hours and need to reintubated. Power Spectral Density and time-frequency domain analysis were applied, computing Discrete Wavelet Transform. A new Q index was proposed to determine the most relevant parameters and the best decomposition level to discriminate between groups. Forward selection and bidirectional techniques were implemented to reduce dimensionality. Linear Discriminant Analysis and Neural Networks methods were implemented to classify these patients. The best results in terms of accuracy were, 84.61 ± 3.1% for successful versus failure groups, 86.90 ± 1.0% for successful versus reintubated groups, and 91.62 ± 4.9% comparing the failure and reintubated groups. Parameters related to Q index and Neural Networks classification presented the best performance in the classification of these patients.Peer ReviewedPostprint (published version

    Scaling-up climate services with users in Latin America

    Get PDF
    Latin America farmers are highly vulnerable to climate variability, with crop losses observed throughout the region on a virtually annual basis. For instance, as indicated by the United Nations’ Food and Agriculture Organization (FAO) and World Food Program (WFP), the 2014–2017 drought conditions in Central America affected over 3.5 million people in Guatemala, Honduras and El Salvador. At the same time, local stakeholders and farmers generally have limited access to existing climate and forecast information, do not have sufficient capacities to understand the climate information and/or mechanisms to relate this information to the impact that climate variations can generate at a local level. This precludes the translation of information into actionable knowledge, and therefore into action. In this study, we describe a process through which scientists and strategic partners have co-developed, tested and scaled out an approach to assess, co-produce, translate and transfer climate information to enable agricultural decision making –the Local Technical Agroclimatic Committees (LTAC). LTACs allow open and clear dialogues about climate variations at multiple timescales, how these can affect crops, and the design of measures to reduce crop loss, particularly providing agronomic recommendations to farmers. We systematically describe the process of evidence generation, creation, partner engagement, scaling up, and monitoring of the approach throughout Latin America. Currently, 35 LTACs exist in 9 Latin American countries, engaging more than 250 public and private institutions, increasing the resilience and food security of an estimated 330,000 farmers, and potentially transforming how Latin American farmers manage climate risk. The study illustrates changes in institutional and farmers' capacities to co-produce, translate and use climate information and explores how better climate and crop prediction models can effectively underpin this process. We show how strategic alliances with farmer organizations, national public, and private and regional climate outlook forums help deliver improved and accurate climate information to users. Finally, we document how LTACs and their integration with other local-scale processes have led to changes in farmers’ management practices to take better advantage of good climatic conditions or avoid losses
    corecore