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Abstract: The optimal extubating moment is still a challenge in clinical practice. Respiratory pattern
variability analysis in patients assisted through mechanical ventilation to identify this optimal
moment could contribute to this process. This work proposes the analysis of this variability using
several time series obtained from the respiratory flow and electrocardiogram signals, applying
techniques based on artificial intelligence. 154 patients undergoing the extubating process were
classified in three groups: successful group, patients who failed during weaning process, and patients
who after extubating failed before 48 hours and need to reintubated. Power Spectral Density and time-
frequency domain analysis were applied, computing Discrete Wavelet Transform. A new Q index was
proposed to determine the most relevant parameters and the best decomposition level to discriminate
between groups. Forward selection and bidirectional techniques were implemented to reduce
dimensionality. Linear Discriminant Analysis and Neural Networks methods were implemented to
classify these patients. The best results in terms of accuracy were, 84.61 ± 3.1% for successful versus
failure groups, 86.90 ± 1.0% for successful versus reintubated groups, and 91.62 ± 4.9% comparing
the failure and reintubated groups. Parameters related to Q index and Neural Networks classification
presented the best performance in the classification of these patients.

Keywords: mechanical ventilation; weaning; wavelet transform; neural networks

1. Introduction

Mechanical Ventilation (MV) is a life support treatment in the Intensive Care Unit
(ICU), that aims to replace the artificial form of the respiratory system. MV is becoming
one of the most important scientific issues in the COVID-19 crisis because patients requir-
ing critical care were mechanical ventilation within 24 hours of admission [1,2]. When a
patient is assisted by MV, one of the main objectives of clinical practice is the recovery of
spontaneous breathing in the shortest possible time. Around 40% of patients who come to
an intensive care unit need mechanical ventilation [3,4], being dramatically increased with
the COVID-19 [1,2]. The prolonged use of ventilatory support increases the morbidity and
mortality of these patients [5–7], the risks of contracting other diseases, and the hospitaliza-
tion cost. On the other hand, early disconnection of the mechanical ventilator, in addition
to being annoying for the patient, can cause cardiopulmonary disorders. According to the
literature, following the actual clinical protocols in the disconnection process, up to 25% of
these patients suffer respiratory distress severe enough to have to be reintubated [3].

The weaning process of a patient can take more time than it has needed to solve
the clinical problem of respiratory failure. This process becomes more difficult when
respiratory assistance has been prolonged in time without the need [8]. Therefore, the study
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of parameters that characterize de respiratory pattern could allow estimating the optimal
moment for extubation of patients, implementing mathematical models. The variability
of these patterns has a non-random behaviour that can be explained by neurocentral
mechanisms or by their instability in neuronal feedback loops.

Various authors have studied this variability and possible indicators that help to select
the optimal moment for the weaning of a patient [8–12]. The behavior of the heart rate
variability is related, among others, to the action exerted by breathing on the cardiovascular
system, generating a synchronization rhythm in the high-frequency range and a secondary
rhythm in the low-frequency range [13]. In the response of the cardiac system, the high-
frequency band is related to the activity of the parasympathetic system, associated with
respiratory sinus arrhythmia. This process can be reduced with moderate or intense
exercise, or with an increase in respiratory rate. The low-frequency band is related to
the modulation of the sympathetic system [14]. During the extubating process, adrenal
stimulation occurs, which can be resected in a fall in the parasympathetic nervous system
activity, affecting the high-frequency components of the heart rhythm. The final response
of the MV depends on the patient’s baseline cardiovascular conditions [15]. Several studies
have been performed related to cardiorespiratory interaction and their influence on the
weaning process spectral analysis of heart rate [16–18], respiration and blood pressure
signals to study the cardiorespiratory control mechanism [19] or mutual spectral analysis
of cardiac interval and respiratory flow signal [20] and the coherence between heart rate
variability and respiratory flow signal [21].

Currently, the spontaneous breathing trial (SBT) is the best diagnostic test to more
accurately determine whether the weaning attempt will be successful. This process needs
several parameters. A single weaning parameter rarely provides sufficient accuracy to
predict weaning outcomes [22]. Furthermore, this prediction decreases when the patients
present with multiorgan dysfunction, advanced age, prolonged MV, and severe diseases,
among others [23,24]. The lack of reliable weaning parameters is related to the heterogeneity
of critically ill patients and their ever-changing clinical course [25–27]. The causes of
weaning failure are not exclusively attributable to insufficient oxygenation or ventilation;
cardiac function, volume status, muscle deconditioning, and the presence of delirium also
affect weaning outcomes [28]. Most indices are based on the clinical condition recorded at
a single moment, although the oxygenation, ventilatory, hemodynamic, musculoskeletal,
and mental states of the patient are often unstable and vary over time.

In this study, time-frequency and statistics techniques are proposed to characterize
the variability of the respiratory pattern of patients during the weaning process. Using the
Wavelet decomposition method, new parameters were extracted from the time series of the
electrocardiogram and respiratory flow signals. A new Q index is proposed that relates the
best decomposition level and its corresponding approximation or detail coefficients of the
Wavelet decomposition process. Forward selection and bidirectional search methods are
implemented to reduce the dimensionality of the data. Finally, classification techniques
such as neural networks and linear discriminant analysis are used to assess the best
model with the best discriminant indices. This methodology allows obtaining a model,
based on artificial intelligence which could contribute to the extubation process of patients
considering their variability and various clinical conditions.

This paper is organized as follows: Section 2 presents the datasets used in this study;
also, the set of parameters which characterizes the respiratory pattern; briefly describes the
methodology, characterization techniques, and classification methods used. The classifica-
tion results are presented in Section 3 and then discussed in Section 4. Finally, conclusions
are presented in Section 5.

2. Materials and Methods
2.1. Database

Electrocardiogram (ECG—lead II) and respiratory flow signals of 154 patients under-
going weaning from mechanical ventilation (WEANDB database) were analyzed [21]. The
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signals were recorded between January 2003 and April 2006, in the Intensive Care Units at
the Santa Creu i Sant Pau Hospital, Barcelona, Spain, and the Getafe Hospital, Getafe, Spain.
All patients were studied in accordance with the corresponding protocols, approved by
each clinical research ethics committee (CEIC—HSant-Pau, and CEIC—HGetafe). The ECG
signal was recorded using a SpaceLabs Medical monitor. The respiratory flow signal was
obtained by a Datex-Ohmeda pneumotachograph (Validyne Model MP45-1-871 variable
reluctance transducer), connected to the patient through an endotracheal tube. The signals
were recorded at a sampling frequency of 250 Hz. Patients considered clinically viable for
weaning underwent the T-tube test, with spontaneous breathing for 30 minutes through the
endotracheal tube. According to the clinical criteria, from the weaning test, patients were
classified into three groups: successful group (SG) with 94 patients (61 male, 33 female,
aged: 65 ± 17 years) who were able to maintain spontaneous breathing after extubating
for a minimum of 48 hours; failure group (FG) with 39 patients (24 male, 15 female, aged:
67 ± 15 years) who could not maintain spontaneous breathing during the test and were
reconnected again to mechanical ventilation; and re-intubated group (RG) with 21 patients
(11 male, 10 female, aged: 68 ± 14 years) that were successful in the T-tube test, but before
48 hours had to be re-intubated and reconnected to the ventilator. Figure 1 presents an
excerpt of ECG and respiratory flow signals of a patient for each group in the extubating
process. The respiratory flow signal present different levels of variability, according to the
clinical condition of each patient.

Int. J. Environ. Res. Public Health 2023, 20, x FOR PEER REVIEW 3 of 14 
 

 

2. Materials and Methods 99 

2.1. Database 100 

Electrocardiogram (ECG—lead II) and respiratory flow signals of 154 patients under- 101 

going weaning from mechanical ventilation (WEANDB database) were analyzed [21]. The 102 

signals were recorded between January 2003 and April 2006, in the Intensive Care Units 103 

at the Santa Creu i Sant Pau Hospital, Barcelona, Spain, and the Getafe Hospital, Getafe, 104 

Spain. All patients were studied in accordance with the corresponding protocols, ap- 105 

proved by each clinical research ethics committee (CEIC—HSant-Pau, and CEIC—HGet- 106 

afe). The ECG signal was recorded using a SpaceLabs Medical monitor. The respiratory 107 

flow signal was obtained by a Datex-Ohmeda pneumotachograph (Validyne Model 108 

MP45-1-871 variable reluctance transducer), connected to the patient through an endotra- 109 

cheal tube. The signals were recorded at a sampling frequency of 250 Hz. Patients consid- 110 

ered clinically viable for weaning underwent the T-tube test, with spontaneous breathing 111 

for 30 minutes through the endotracheal tube. According to the clinical criteria, from the 112 

weaning test, patients were classified into three groups: successful group (SG) with 94 113 

patients (61 male, 33 female, aged: 65 ± 17 years) who were able to maintain spontaneous 114 

breathing after extubating for a minimum of 48 hours; failure group (FG) with 39 patients 115 

(24 male, 15 female, aged: 67 ± 15 years) who could not maintain spontaneous breathing 116 

during the test and were reconnected again to mechanical ventilation; and re-intubated 117 

group (RG) with 21 patients (11 male, 10 female, aged: 68 ± 14 years) that were successful 118 

in the T-tube test, but before 48 hours had to be re-intubated and reconnected to the ven- 119 

tilator. Figure 1 presents an excerpt of ECG and respiratory flow signals of a patient for 120 

each group in the extubating process. The respiratory flow signal present different levels 121 

of variability, according to the clinical condition of each patient.  122 

 123 

Figure 1. Excerpt of ECG and respiratory flow signals from patients undergoing extubation process 124 
of (a, b) a patient from the successful group, (c, d) a patient from the failed group, and (e, f) a patient 125 
from the reintubated group. 126 

2.2. Preprocessing of Signals 127 

ECG and respiratory flow signals were preprocessed to reduce outliers and artifacts, 128 

and the linear trends were removed. Time series of these signals were extracted using 129 

custom algorithms, based on detection of zero crossing, and maximum and minimum val- 130 

ues of the events of the signals. To characterize the respiratory pattern, the following time 131 

series were obtained from the respiratory flow signal: inspiratory time (𝑇𝐼), expiratory 132 

Figure 1. Excerpt of ECG and respiratory flow signals from patients undergoing extubation process
of (a,b) a patient from the successful group, (c,d) a patient from the failed group, and (e,f) a patient
from the reintubated group.

2.2. Preprocessing of Signals

ECG and respiratory flow signals were preprocessed to reduce outliers and artifacts,
and the linear trends were removed. Time series of these signals were extracted using
custom algorithms, based on detection of zero crossing, and maximum and minimum
values of the events of the signals. To characterize the respiratory pattern, the following
time series were obtained from the respiratory flow signal: inspiratory time (TI), expiratory
time (TE), duration of the respiratory cycle (TTot), tidal volume (VT), inspiratory fraction
(TI/TTot), mean inspired flow (VT/TI), frequency-tidal volume ratio ( f /VT), where f is the
respiratory rate. In addition, from the ECG signal, the cardiac beat to beat interval (RR)
was obtained [15–17]. Figures 2 and 3 illustrate an example of TTOT and RR time series of a
patient from each group: SG, FG and RG, respectively.
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Figure 3. Excerpt of beat-to-beat interval (RR) from a patient of (a) successful group (SG), (b) failed
group (FG), and (c) reintubated group (RG).

To analyze the behavior of the respiratory and cardiorespiratory system at the same
time, all these time series were resampled considering frequencies of 0.5 Hz, 1 Hz, 1.5 Hz,
2 Hz, 2.5 Hz and 3 Hz, applying linear interpolation. To determine the best frequency that
maintains the spectrum of these new signals, the mean square error (MSE) of the power
spectral density (PSD) was compared between the original and the resampled respiratory
and cardiac time series. According to the results, a loss of less than 2% was obtained in the
MSE at a frequency of 2 Hz for all series, so the cardiac and respiratory time series were
resampled to 2 Hz.
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2.3. Processing of the Time Series Signals

To characterize the respiratory pattern and its cardiorespiratory interaction through
the time series TI , TE, TTot, VT , TI/TTot, VT/TI , f /VT , RR, its power spectral density
(PSD) was obtained and then calculated each peak amplitude (PA), peak frequency (PF),
interquartile range (IQR), and power value (P) at 98%. For each patient, 32 new variables
were obtained that make up data set 1 (Dataset1). Figure 4 is a schematic representation of
the analyzed dataset.
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Figure 4. Schematic representation of the 32 variables extracted from the power spectral density
for each of the 8 time series that describe the respiratory and cardiac pattern. TI : inspiratory time,
TE : expiratory time, TTot : duration of the respiratory cycle, VT : tidal volume, TI/TTot : inspiratory
fraction, VT/TI : mean inspired flow, f /VT : frequency–tidal volume ratio, where f is the respiratory
rate; RR: cardiac beat-to-beat interval.

2.4. Wavelet Transform

The continuous Wavelet transform is given by:

f (a, τ) =
1√
a

∫ ∞

−∞
f (t)ϕ

(
t− τ

a

)
dt (1)

being a the scale factor and τ the translation in time. The scale factor 1/
√

a normalizes
the energy. The scale a and position τ varies continuously over the real domain. For small
values of a, the Wavelet is contracted over the time, generating information about the
details of the signal. For high values of a, the Wavelet transform is expanded and illustrates
the approximations of the signal. Thus, the scale-frequency relationship can be seen as a
conglomerate of cells, where small scales correspond to high frequencies, and high scales
correspond to low frequencies. The inverse relationship between time and frequency causes
each of the cells to have the same area and be different from zero.

The discrete Wavelet transform (DWT) allows a multiresolution analysis, applying a
bank of high-pass G(z) and low-pass H(z) filters in cascade, followed by a sub-sampling
stage (Figure 5). Each pair of filters represents a level of decomposition. The reconstruction
of the original signal is made from a bank of synthesis filters, introducing zeros between
the samples of the signal, computed with high-pass G’(z) and low-pass H’(z) filters. This
reconstruction process allows the recovery of the original signal if the coefficient is not
altered [20]. The approximation coefficients (AC) and detail coefficients (DC) are obtained
from the decomposition stage of the signal implementing the DWT. The approximations
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correspond to the low frequency components of the signal, and the details with the high
frequency components [20,29].
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Figure 5. Algorithm of DWT decomposition through filter bank, where X[n] is the input signal, AC1,
DC1 and AC2, DC2 represent two levels of decomposition of X[n], respectively.

2.5. Extraction of Parameters

In the time-frequency analysis of the signals from the DWT, the following Wavelets fami-
lies were implemented: Daubechies (1:45), Coiflets (1:5), Symlets (1:29) and of the Biorthogonal
family the models 1.1, 1.3, 1.5, 2.2, 2.4, 2.6, 2.8, 3.1, 3.3, 3.5, 3.7, 3.9, 4.4, 5.5 and 6.8. In order to
obtain the best mother Wavelet and level, the results of these were analyzed by comparing
the MSE obtained between the original signal and the reconstructed one, implementing
the maximum level of decomposition allowed by the entropy criteria, according to the
methodology applied in [29]. Table 1 presents the MSE of the best Wavelets for each time
series of the total of level decomposition. The family of biorthogonal Wavelets presents
the smallest error for each of the analyzed data series. Implemented the corresponding
Wavelets for each time series, the approximation (ACj) and detail (DCj) coefficients for
each level of decomposition j were obtained. For each approximation and detail coefficient,
the mean statistics (X), standard deviation (S), skewness (SK), kurtosis (K) and interquartile
range (IQR) were obtained. Finally, a total of 640 Wavelet indices that characterize the
respiratory and cardiac pattern were obtained.

Table 1. Mean squared error (MSE) of the best wavelets for each time series.

Time Series MSE Wavelet

f/VT 6 × 10−21 Bior 2.4
RR 1 × 10−21 Bior 2.6
TE 5 × 10−21 Bior 2.6
TI 1 × 10−21 Bior 2.6

TI/TTot 1 × 10−21 Bior 2.4
TTot 5 × 10−21 Bior 2.4

VT/TI 2 × 10−21 Bior 2.6
VT 4 × 10−21 Bior 2.6

2.6. Dimensionality Reduction

To reduce the dimensionality of the data, a novel Q index based on the average values
of the probability to obtain statistically significant differences (p < 0.05) between different
parameters is proposed. The statistical significance of the parameters is obtained applying
the Mann-Whitney U Test. For this study, 640 parameters obtained through the discrete
wavelet transform have been analyzed. This new index relates the sum of the occurrence
probability of each parameter with p < 0.05 with respect to its total occurrence probability
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and the number of elements used in the comparison. Q index is applied to approximation
ACj and detail DCj coefficients of each decomposition level j, respectively, as follows:

Q(ACj)
=

∑k
i=1(p(k, i) < 0.05)

1
n1n2

∑n1
k=1 ∑n2

i=1 p(k, i)
(2)

Q(DCj)
=

∑k
i=1(p(k, i) < 0.05)

1
n1n2

∑n1
k=1 ∑n2

i=1 p(k, i)
(3)

being n1 and n2 the number of patients corresponding to each group compared, respectively.
In the dimensionality reduction process, the maximum value of the Q index is selected.
This index indicates the best decomposition level and its corresponding approximation or
detail coefficients of the time series computed with their corresponding statistics (X, S, SK,
K and IQR) values. Table 2 presents the characteristics that obtained the best value of the
Q index, when comparing (1) SG vs FG, (2) SG vs RG and (3) FG vs RG, respectively. All
these parameters make up data set 2 (Dataset2).

Table 2. Parameters that obtained the maximum value of the Q index when comparing patients of
each of the groups.

Comparison Group Parameters

SG vs FG (CA7-f/VT), (CA8-RR), (CA1-TE), (CD1-TI), (CD2-TI/TTot),
(CA8-TTot), (CD1-VT/TI), (CD7-VT)

SG vs RG (CD1-f/VT), (CD2-RR), (CD4-TE), (CD4-TI), (CA7-TI/TTot),
(CD3-TTot), (CD3-VT/TI), (CA1-VT)

FG vs RG (CD1-f/VT), (CD2-RR), (CD4-TE), (CD1-TI), (CA5-TI/TTot),
(CD1-TTot), (CD3-VT/TI), (CD8-VT)

2.7. Classifications Techniques

The paper compared two classification systems: neural networks (NN) and linear
discriminant analysis (LDA). NN was implemented because it has demonstrated an excep-
tional learning capability in high dimensionality systems, even with collinear variables,
allowing to adjust the parameters to avoid overfitting, improving the bias and variance
of the final system. LDA is a very good contrast method as it allows the adjustment of
the system hyperparameters by Bayesian methods to increase the performance avoiding
system overfitting.

2.7.1. Neural Networks

Neural networks are mathematical models that use learning algorithms inspired by
the brain to store information. A pattern is represented by a number of features that form a
vector x of dimension d within a space X ∈ Rd. A classifier maps the input space X to a
finite set of classes C = {1, ..., l}. An NN is trained to execute a classification task in a set
S = {(xµ, tµ), µ = 1, ..., M} using a supervised learning algorithm. The training set S consists
of a vector of M features, with x µ ∈ Rd, each tagged to a class t µ ∈ C [30]. Several NN
architectures and training algorithms were implemented, and the best results were obtained
with a 3-hidden-layer system and one output unit. Logistic and tangential functions were
implemented to activate the hidden layer and the output layer respectively. The system
was trained using backpropagation method validated through the 4-fold cross-validation
technique with 150 runs, this allows an accurate estimation of the error in the test data with
a good balance between bias and variance, without the need to increase the computational
cost. To analyze the performance of the classification, the mean accuracy of 600 trials was
obtained, and to improve its generalization the Bayesian Regularization technique was
implemented [30]. The feature selection was carried out applying the wrapper sequential
method of elimination of characteristics forward selection and bidirectional search [31–33].
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Due to the imbalance of the SG, FG and RG groups, the rand resampled methodology [34]
was implemented to equalize the classes.

2.7.2. Linear Discriminant Analysis

Let us a problem with two classes C1 and C2 and p variables, with n1 items in C1
and n2 items in C2. X1 is the average vector of the observed items in C1 and X2 is the
corresponding average vector items in C2 [28]. Let µ1 and µ2 identify the means of the
population of the predictor variables in each class and let us assume the simplification
property that the covariance matrices for both classes are the same i(∑1 = ∑2 = ∑).

The linear discriminant analysis (LDA) is made explicit by assigning an item X to the
C1 if:

D(x, C1) < D(x, C2) (4)

where D(x, C1) = (x− µi) ∑−1(x− µi), for i = 1,2 results the square of the de Mahala
Nobis Distance:

(µ1 − µ2) ∑−1
[

X− 1
2
(µ1 + µ2)

]
> 0 (5)

where µi can be approximated by the simple means and ∑ by the simple covariance S
calculated as:

S =
(n1 − 1)S1 + (n2 − 1)S2

n1 − n2 − 2
. (6)

If S1 y S2 are the covariance matrix for each class, we get the Linear Discriminant Function.

(
X1 − X2

)
S−1

[
X− 1

2
(
X1 − X2

)]
> 0 . (7)

In the LDA, the system was trained and validated through the 4-fold cross-validation
technique with 150 runs, obtaining the mean of the accuracy of 600 trials as performance
measure classification. The feature selection was carried out applying the wrapper sequential
method of elimination of characteristics forward selection and bidirectional search [31–33,35].
Due to the imbalance of the SG, FG and RG groups, the rand resampled methodology [34]
was implemented to equalize the classes.

3. Results

In this study, the patients from the Weandb database are analyzed considering the
following classification:

Successful vs failed patients (SG vs FG),
Successful vs reintubated patients (SG vs RG)
Failed vs reintubated patients (FG vs RG).

Classification by NN´s and LDA, were implemented in conjunction with forward
selection and bidirectional search dimensionality reduction techniques [32–36] for the
Dataset1 and Dataset2, separately. To perform the classification, 80% of the data were
randomly chosen to find the system model, and the remaining 20% of the data were
used as test data. The 80% of the data used was validated through the 4-fold cross-
validation technique, where each run the groups were randomized again, generating
600 different models, obtaining the accuracy of the 150 runs implemented. The accuracy
was implemented because the clinical interest of importance of the classes is equal, and it
is not convenient to give more weight to one class. The multiclass training problem was
not performed because of the clinical medical interest of facing the classes in a paired way,
to obtain the indexes that allow us to separate the classes that clinically have a greater
problem of correct classification, to perform a later study with the relevant variables of the
classes faced, to give a physiological explanation and to know more about the etiology of
the problem. Tables 3–5 present the parameters with the best accuracy results, in terms of
mean ± standard deviation, for each comparison group. For both, Dataset1 and Dataset2,
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the NN´s and LDA classification methods were implemented applying forward selection
and bidirectional techniques. Accuracy corresponds to 20% of the remaining data.

Table 3. Parameters with the highest accuracy (mean ± standard deviation), when comparing the
groups of patients SG vs FG.

Data
Base

Classification
Techniques

Reduction
Dimensionality

Techniques
Parameters Selected Accuracy (%)

Dataset1 NN
Forward Selection PF(f/VT), P(VT/TI), IQR(TI/TTot), PA(f/VT) 65.30 ± 5.9

Bidirectional Search PF(f/VT), P(VT/TI), IQR(TI/TTot) 54.40 ± 6.9

Dataset2 NN
Forward Selection IQR(CD1-TI), K(CA8-RR) 84.61 ± 3.1

Bidirectional Search IQR(CD1-TI), K(CA8-RR), IQR(CD1-VT/TI), K(CD1-TI),
X(CA7-f/VT) 80.76 ± 6.2

Dataset1 LDA
Forward Selection PA(f/VT) 70.00 ± 7.8

Bidirectional Search PA(f/VT), P(f/VT) 70.60 ± 7.7

Dataset2 LDA
Forward Selection IQR(CD2-TI/TTot) 71.64 ± 0.8

Bidirectional Search IQR(CD2-TI/TTot) X(CA7-f/VT), IQR(CD1-VT/TI) 72.13 ± 4.8

Table 4. Parameters with the highest accuracy (mean ± standard deviation), when comparing the
groups of patients SG vs RG.

Data Base Classification
Techniques

Reduction
Dimensionality

Techniques
Parameters Selected Accuracy (%)

Dataset1 NN
Forward Selection P(RR) 78.23 ± 0.7

Bidirectional Search P(RR), PF(f/VT) 86.82 ± 0.7

Dataset2 NN
Forward Selection X(CD1-f/VT) 82.60 ± 3.0

Bidirectional Search X(CD1-f/VT), IQR(CD3-VT/TI) 86.90 ± 1.0

Dataset1 LDA
Forward Selection PF(f/VT) 80.91 ± 6.4

Bidirectional Search PF(f/VT), IQR(VT/TI) 81.33 ± 6.8

Dataset2 LDA
Forward Selection X(CD1-f/VT) 83.33 ± 7.4

Bidirectional Search X(CD1-f/VT), IQR(CD3-TTot) 82.55 ± 7.5

From the results it is highlighted, in general, that the highest values of accuracy are
achieved with the information of the dataset2, in addition the neural network algorithm
presents a higher percentage than the LDA algorithm, these results are because the Q index
allows to establish the coefficients of the wavelet transform that have more information,
in addition, the processing of the data in the time-frequency domain allows establishing
descriptors that characterize the extubating process. In this study we have obtained three
reliable models for the prediction of the extubating process. With the model presented
in Table 3, it can be determined if the patient should remain connected to mechanical
ventilation. If they belong to the SG group, a second diagnosis can be performed with the
model in Table 4, since in RG patients there may be information that the SG group does
not present.
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Table 5. Parameters with the highest accuracy (mean ± standard deviation), when comparing the
groups of patients FG vs RG.

Data
Base

Classification
Techniques

Reduction
Dimensionality

Techniques
Parameters Selected Accuracy (%)

Dataset1 NN
Forward Selection PF(f/VT), PA(TI/TTot), PA(TI), PA(RR), PA(f/VT), IQR(TTot),

IQR(CD1-TI), IQR(RR), IQR(f/VT) 50.00 ± 1.6

Bidirectional Search PF(f/VT), PF(TI/TTot), PA(TI), PA(RR), PA(f/VT), P(TTot) 58.36 ± 1.3

Dataset2 NN

Forward Selection S(CD1-TTot), X(CD1-f/VT), IQR(CD1-f/VT), K(CD2-RR), Sk(CD1-f/VT),
K(CD1-f/VT)

83.31 ± 3.4

Bidirectional Search
S(CD1-TTot), X(CD1-f/VT), IQR(CD1-f/VT), K(CD2-RR), Sk(CD1-f/VT),
K(CD1-f/VT), S(CD1-f/VT), X(CA5-TI/TTot), S(CD1-TI), K(CD1-TTot),
Sk(CD1-TTot), IQR(CD2-RR), K(CD4-TE)

91.62 ± 4.9

Dataset1 LDA
Forward Selection PF(f/VT), PA(f/VT), PA(TE), PA(TI/TTot), P(f/VT) 76.00 ± 10.8

Bidirectional Search X(CD2-RR), S(CD2-RR) 75.34 ± 11.3

Dataset2 LDA
Forward Selection PA(f/VT), IQR(TTot) 75.36 ± 11.3

Bidirectional Search X(CD2-RR) 80.15 ± 10.6

4. Discussion

A novel methodology based on the calculation of the PSD and its parameters was
implemented, together with the DWT in the cardiorespiratory time series. The new Q
index to reduce the dimensionality of the data was applied to the parameters extracted
from the DWT and their statistical-spectral. According to the results, the maximum value
of Q was obtained with the statistical expressions of parameters such as common CD1-TI
between SG vs FG and FG vs RG groups, CD1− f /VT common between SG vs RG and
FG vs RG groups, and CD2-RR, CD4− TE and CD3− VT/TI that are common between
SG vs RG and FG vs RG groups. Furthermore, parameters related to approximation
coefficients of CA7− f /VT and CA1− TE, and detail coefficients of CD2− TI/TTot, are
only in SG vs FG classification group; approximation parameter CA1−VT is only in SG
vs FG classification group; while in the FG vs RG classification group all parameters are
related to the other two comparisons. Neural Network method allows modeling complex
functions [30] with the Forward Selection and Bidirectional Search techniques allowing a
good subset of input features to obtained. Both with the NN´s and the LDA classification
techniques, a reduced number of parameters with optimal results were obtained, when
classifying the three groups of patients. When comparing SG vs RG groups, the bidirectional
dimensionality reduction technique presented the highest scores to classify these patients.
The parameters X(CD1− f /VT) and IQR(CD3−VT/TI) presented the best accuracy score,
being X(CD1− f /VT) the most recurrent in all the bests accuracy results, comparing these
groups. The bests results, depending on the accuracies, were obtained by applying the
NN´s method and Wavelet transform in Dataset1: 84.61 ± 3.1% when comparing SG vs
FG groups, 86.90 ± 1.0% when comparing SG vs RG groups, and 91.62 ± 4.9% when
comparing FG vs RG groups. The results showed that the most relevant information to
differentiate between the groups, is concentrated in the first level of the detail coefficients
of the Wavelet Analysis.

Similar studies have been done, but they differ in database and methodology. Kwong
et al., [37] conducted a review of the state of the art, identifying the following databases:
MIMIC-II, MIMIC-III and MIMIC-IV (publics databases), Weandb (used in this study)
and other studies were based on data collected in ICU units based in UK hospitals (adult
general ICU of the Sheffield Royal Hallamshire Hospital and neonatal ICU of the Royal
Liverpool University Hospital). The most common machine learning algorithms are the
neural network, the support vector machine (SVM) and the Adaptive Neuro Fuzzy Infer-
ence System (ANFIS); some of the ventilator variables used in these studies are inspiratory
time, expiratory time, tidal volume, positive end expiratory pressure, fraction of inspired
oxygen, cardiac interbeat duration (RR- interval), oxygen saturation, respiratory rate. Ossai
and Wickramasinghe [38], conducted a study aimed at reviewing the efficacy of different
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techniques in the mechanical ventilation process using machine learning. The main param-
eters for the classifier design were determined with logistic regression, backward feature
selection, and recursive feature elimination; successful weaning results ranged between
44% to 92%. The results of the design of three classifiers are shown in [39]: artificial neural
networks, k nearest neighbors and support vector machine (SVM), the input variables to the
system are the pressure signal, flow and ventilatory volume, during invasive mechanical
ventilation of patients at Hospital San Vicente Fundación; five statistics were determined
for each signal: mean, standard deviation, kurtosis, interquartile range, and skewness. The
classification system can recognize respiration levels with up to 80% accuracy using the
SVM algorithm. A recent study on adult ICU patients is presented in [40], the database
included patient demographics, medical records, time series and respiratory events; a
comparison was made between three classifiers: logistic discriminant analysis, SVM and
gradient boosting method. The best classifier was SVM, which predicts extubation with an
accuracy of 94.6%. As future work, it is proposed to study new techniques in the time and
frequency domain of WEANDB signals to extract features that serve as input to classifiers
based on the theory of convolutional neural networks. In [41], the multi-synchrosqueezing
extraction transform (MSSET) method was proposed for the time-frequency analysis of
electrocardiogram signals, this method allows higher accuracy in detection of peaks in
the spectrum. In [42] the design of a convolutional neural network (CNN) to predict the
extubation process is presented. The algorithm is validated with historical data from the
MIMIC- III database. The model achieved an accuracy of 86% and an area under the receiver
operating curve (AUC-ROC) of 0.94. It is important to incorporate these machine learning
techniques into a real-time monitoring system that analyzes ventilatory pattern signals,
seeking to reduce the burden on medical staff and clarify the MV decision scenario to which
subjects undergo. The results of the classification system are similar, and in some cases,
superior to those reported in the literature, with the advantage that the data required by
the algorithm correspond to information on the temporal behavior of the cardiorespiratory
system, information that can be recorded with biomedical equipment located in an ICU.

Regarding the clinical problem, it is of special interest to study the patients who must
be reintubated during weaning process, due to their clinical implications, among others.
The behavior of these patients begins by being successful and then ends by being a failure.
Consequently, the diagnosis of these patients might require greater knowledge of their
conditions. The results suggest the parameter ( f /VT) as a good indicator to classify the
reintubated patients when compared with successful and failed groups. This result agrees
with the clinical study carried out in [38], confirming its usefulness in the analysis of the
physiological differences between these groups, improving the success rate in the weaning
process. With this study, we suggest that detailed coefficients indices from discrete Wavelet
transform can contribute to identify and classify weaning patients. We have introduced a
novel model that could contribute to stratifying these patients, with the new Q index to
identify the best parameters for the classification. The Q parameter can be applied to differ-
ent biomedical signal classification problems that require analysis in the time-frequency
domain because this index indicates the best decomposition level and its corresponding
approximation or detail coefficients of the calculated time series, corresponding to the
coefficients that make a greater contribution to the energy of the original signal. This study
has allowed combined these techniques to describe the cardiorespiratory pattern of these
patients, analyzing the interaction between 640 parameters. However, these results should
be validated with a greater number of patients, especially in the reintubated group. In
addition, other clinical parameters could be included in the model. Finally, the best model
has been obtained with the most relevant parameters to classify each group of patients
in the weaning process. One limitation of this work is related to the clinical condition
and comorbidities of the patients, although there are several factors associated with wean-
ing failure, factors such as respiratory physiological parameters, modes of mechanical
ventilation, endocrine and metabolic dysfunction, ICU-acquired weakness or diaphragm
dysfunction could not be fully examined in the study, because this was performed retro-
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spectively, therefore, future prospective multicenter studies of patients undergoing SBT are
necessary taking into account the factors related above.

5. Conclusions

Weaning can be defined as the process by which the work of breathing performed
by the MV is gradually transferred to the patient, and the patient resumes spontaneous
breathing. Withdrawal of respiratory support is a delicate process, which must be per-
formed promptly to avoid indefinite patient dependence on ventilatory support, decrease
morbidity and mortality, and reduce the cost of health care. The article presents the design
of a classifier that can be implemented in ICUs when performing a spontaneous breathing
test, providing support to the physician when establishing whether a patient can remain
connected to a mechanical ventilator. Although artificial intelligence applied in these pro-
cesses may present a risk of bias due to the availability of data for training the models, its
implementation will facilitate the interpretation of the different variables that are recorded
during an SBT process. As training data for the proposed algorithm, the information
recorded during the 30-minute SBT test was used. It is recommended to carry out a study
to establish the best time intervals to determine the characteristics of the respiratory cycle,
which will allow establishing indicators to determine whether a patient can be disconnected
from a MV. Further, these results can also be analyzed using information from the clinical
condition and the correlation with these signals.
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