8,126 research outputs found

    Extended supersymmetric sigma models in AdS_4 from projective superspace

    Full text link
    There exist two superspace approaches to describe N=2 supersymmetric nonlinear sigma models in four-dimensional anti-de Sitter (AdS_4) space: (i) in terms of N=1 AdS chiral superfields, as developed in arXiv:1105.3111 and arXiv:1108.5290; and (ii) in terms of N=2 polar supermultiplets using the AdS projective-superspace techniques developed in arXiv:0807.3368. The virtue of the approach (i) is that it makes manifest the geometric properties of the N=2 supersymmetric sigma-models in AdS_4. The target space must be a non-compact hyperkahler manifold endowed with a Killing vector field which generates an SO(2) group of rotations on the two-sphere of complex structures. The power of the approach (ii) is that it allows us, in principle, to generate hyperkahler metrics as well as to address the problem of deformations of such metrics. Here we show how to relate the formulation (ii) to (i) by integrating out an infinite number of N=1 AdS auxiliary superfields and performing a superfield duality transformation. We also develop a novel description of the most general N=2 supersymmetric nonlinear sigma-model in AdS_4 in terms of chiral superfields on three-dimensional N=2 flat superspace without central charge. This superspace naturally originates from a conformally flat realization for the four-dimensional N=2 AdS superspace that makes use of Poincare coordinates for AdS_4. This novel formulation allows us to uncover several interesting geometric results.Comment: 88 pages; v3: typos corrected, version published in JHE

    Six-dimensional Supergravity and Projective Superfields

    Full text link
    We propose a superspace formulation of N=(1,0) conformal supergravity in six dimensions. The corresponding superspace constraints are invariant under super-Weyl transformations generated by a real scalar parameter. The known variant Weyl super-multiplet is recovered by coupling the geometry to a super-3-form tensor multiplet. Isotwistor variables are introduced and used to define projective superfields. We formulate a locally supersymmetric and super-Weyl invariant action principle in projective superspace. Some families of dynamical supergravity-matter systems are presented.Comment: 39 pages; v3: some modifications in section 2; equations (2.3), (2.14b), (2.16) and (2.17) correcte

    Relating harmonic and projective descriptions of N=2 nonlinear sigma models

    Full text link
    Recent papers have established the relationship between projective superspace and a complexified version of harmonic superspace. We extend this construction to the case of general nonlinear sigma models in both frameworks. Using an analogy with Hamiltonian mechanics, we demonstrate how the Hamiltonian structure of the harmonic action and the symplectic structure of the projective action naturally arise from a single unifying action on a complexified version of harmonic superspace. This links the harmonic and projective descriptions of hyperkahler target spaces. For the two examples of Taub-NUT and Eguchi-Hanson, we show how to derive the projective superspace solutions from the harmonic superspace solutions.Comment: 25 pages; v3: typo fixed in eq (1.36

    Pipeline quantum processor architecture for silicon spin qubits

    Get PDF
    We propose a quantum processor architecture, the qubit ‘pipeline’, in which run-time scales additively as functions of circuit depth and run repetitions. Run-time control is applied globally, reducing the complexity of control and interconnect resources. This simplification is achieved by shuttling N-qubit states through a large layered physical array of structures which realise quantum logic gates in stages. Thus, the circuit depth corresponds to the number of layers of structures. Subsequent N-qubit states are ‘pipelined’ densely through the structures to efficiently wield the physical resources for repeated runs. Pipelining thus lends itself to noisy intermediate-scale quantum (NISQ) applications, such as variational quantum eigensolvers, which require numerous repetitions of the same or similar calculations. We illustrate the architecture by describing a realisation in the naturally high-density and scalable silicon spin qubit platform, which includes a universal gate set of sufficient fidelity under realistic assumptions of qubit variability

    Pipeline quantum processor architecture for silicon spin qubits

    Get PDF
    We propose a quantum processor architecture, the qubit ‘pipeline’, in which run-time scales additively as functions of circuit depth and run repetitions. Run-time control is applied globally, reducing the complexity of control and interconnect resources. This simplification is achieved by shuttling N-qubit states through a large layered physical array of structures which realise quantum logic gates in stages. Thus, the circuit depth corresponds to the number of layers of structures. Subsequent N-qubit states are ‘pipelined’ densely through the structures to efficiently wield the physical resources for repeated runs. Pipelining thus lends itself to noisy intermediate-scale quantum (NISQ) applications, such as variational quantum eigensolvers, which require numerous repetitions of the same or similar calculations. We illustrate the architecture by describing a realisation in the naturally high-density and scalable silicon spin qubit platform, which includes a universal gate set of sufficient fidelity under realistic assumptions of qubit variability

    N = 2 supersymmetric sigma-models and duality

    Full text link
    For two families of four-dimensional off-shell N = 2 supersymmetric nonlinear sigma-models constructed originally in projective superspace, we develop their formulation in terms of N = 1 chiral superfields. Specifically, these theories are: (i) sigma-models on cotangent bundles T*M of arbitrary real analytic Kaehler manifolds M; (ii) general superconformal sigma-models described by weight-one polar supermultiplets. Using superspace techniques, we obtain a universal expression for the holomorphic symplectic two-form \omega^{(2,0)} which determines the second supersymmetry transformation and is associated with the two complex structures of the hyperkaehler space T*M that are complimentary to the one induced from M. This two-form is shown to coincide with the canonical holomorphic symplectic structure. In the case (ii), we demonstrate that \omega^{(2,0)} and the homothetic conformal Killing vector determine the explicit form of the superconformal transformations. At the heart of our construction is the duality (generalized Legendre transform) between off-shell N = 2 supersymmetric nonlinear sigma-models and their on-shell N = 1 chiral realizations. We finally present the most general N = 2 superconformal nonlinear sigma-model formulated in terms of N = 1 chiral superfields. The approach developed can naturally be generalized in order to describe 5D and 6D superconformal nonlinear sigma-models in 4D N = 1 superspace.Comment: 31 pages, no figures; V2: reference and comments added, typos corrected; V3: more typos corrected, published versio

    Evidence supporting the best clinical management of patients with multimorbidity and polypharmacy: a systematic guideline review and expert consensus

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this record.The complexity and heterogeneity of patients with multimorbidity and polypharmacy renders traditional disease-oriented guidelines often inadequate and complicates clinical decision making. To address this challenge, guidelines have been developed on multimorbidity or polypharmacy. To systematically analyse their recommendations, we conducted a systematic guideline review using the Ariadne principles for managing multimorbidity as analytical framework. The information synthesis included a multistep consensus process involving 18 multidisciplinary experts from seven countries. We included eight guidelines (four each on multimorbidity and polypharmacy) and extracted about 250 recommendations. The guideline addressed (i) the identification of the target population (risk factors); (ii) the assessment of interacting conditions and treatments: medical history, clinical and psychosocial assessment including physiological status and frailty, reviews of medication and encounters with healthcare providers highlighting informational continuity; (iii) the need to incorporate patient preferences and goal setting: eliciting preferences and expectations, the process of shared decision making in relation to treatment options and the level of involvement of patients and carers; (iv) individualized management: guiding principles on optimization of treatment benefits over possible harms, treatment communication and the information content of medication/care plans; (v) monitoring and follow-up: strategies in care planning, self-management and medication-related aspects, communication with patients including safety instructions and adherence, coordination of care regarding referral and discharge management, medication appropriateness and safety concerns. The spectrum of clinical and self-management issues varied from guiding principles to specific recommendations and tools providing actionable support. The limited availability of reliable risk prediction models, feasible interventions of proven effectiveness and decision aids, and limited consensus on appropriate outcomes of care highlight major research deficits. An integrated approach to both multimorbidity and polypharmacy should be considered in future guidelines.Journal of Internal MedicineKarolinska Institutet Strategic Research Area in Epidemiology (SfoEpi

    Amphibians and Reptiles of Luzon Island, Philippines: the Herpetofauna of Pantabangan-Carranglan Watershed, Nueva Ecija Province, Caraballo Mountain Range

    Get PDF
    We present detailed species accounts for fifty-nine (59) species of amphibians and reptiles (17 frogs, 14 skinks, 3 agamids, 6 gekkonid lizards, 2 varanids, and 17 snakes) from Pantabangan-Carranglan Watershed, which lies within the Caraballo Mountain Range, whose biota is poorly-known. This was also the first extensive survey of herpetofauna within the watershed. Together with data from previous literature reviews, our records bring the total number of species of amphibians and reptiles for the Caraballo Mountain Range to 66. Forty-two (42) species from the area were Philippine endemics, with 25 species recorded only from Luzon faunal region. Seven species of herpetofauna are associated with unresolved taxonomic issues (new species and species complexes needing taxonomic partitioning, e.g. splitting of species groups). Two species recorded from the area were rarely represented in museum collections. Major distributional and elevational range extensions were recorded for several species. Comparison with Luzon’s other mountain ranges showed that the Caraballo Mountain Range is similar, in terms of species composition, to the northern Sierra Madre and Cordillera Mountain Ranges. The result of this survey showed the Caraballo Mountain Range and its mountains as a possible new center of herpetofaunal diversity and endemicity within Luzon. The importance of the Caraballo Mountain Range as an important biogeographic link merits further study
    • 

    corecore