42 research outputs found

    Removing Systemic Barriers to Equity, Diversity, and Inclusion: Report of the 2019 Plant Science Research Network Workshop “Inclusivity in the Plant Sciences”

    Get PDF
    A future in which scientific discoveries are valued and trusted by the general public cannot be achieved without greater inclusion and participation of diverse communities. To envision a path towards this future, in January 2019 a diverse group of researchers, educators, students, and administrators gathered to hear and share personal perspectives on equity, diversity, and inclusion (EDI) in the plant sciences. From these broad perspectives, the group developed strategies and identified tactics to facilitate and support EDI within and beyond the plant science community. The workshop leveraged scenario planning and the richness of its participants to develop recommendations aimed at promoting systemic change at the institutional level through the actions of scientific societies, universities, and individuals and through new funding models to support research and training. While these initiatives were formulated specifically for the plant science community, they can also serve as a model to advance EDI in other disciplines. The proposed actions are thematically broad, integrating into discovery, applied and translational science, requiring and embracing multidisciplinarity, and giving voice to previously unheard perspectives. We offer a vision of barrier-free access to participation in science, and a plant science community that reflects the diversity of our rapidly changing nation, and supports and invests in the training and well-being of all its members. The relevance and robustness of our recommendations has been tested by dramatic and global events since the workshop. The time to act upon them is now

    Feasibility of a Dragon-Derived Mars Lander for Scientific and Human-Precursor Missions

    Get PDF
    A minimally-modified SpaceX Dragon capsule launched on a Falcon Heavy rocket presents the possibility of a new low-cost, high-capacity Mars lander for robotic missions. We have been evaluating such a "Red Dragon" platform as an option for the Icebreaker Discovery Program mission concept. Dragon is currently in service ferrying cargo to and from the International Space Station, and a crew transport version is in development. The upcoming version, unlike other Earth-return vehicles, exhibits most of the capabilities necessary to land on Mars. In particular, it has a set of high-thrust, throttleable, storable bi-propellant "SuperDraco" engines integrated directly into the capsule that are intended for launch abort and powered landings on Earth. These thrusters provide the possibility of a parachute-free, fully-propulsive deceleration at Mars from supersonic speeds to the surface, a descent approach which would also scale well to larger future human landers. We will discuss the motivations for exploring a Red Dragon lander, the current results of our analysis of its feasibility and capabilities, and the implications of the platform for the Icebreaker mission concept. In particular, we will examine entry, descent, and landing (EDL) in detail. We will also describe the modifications to Dragon necessary for interplanetary cruise, EDL, and operations on the Martian surface. Our analysis to date indicates that a Red Dragon lander is feasible and that it would be capable of delivering more than 1000 kg of payload to sites at elevations three kilometers below the Mars Orbiter Laser Altimeter (MOLA) reference, which includes sites throughout most of the northern plains and Hellas

    The effect of a brief social intervention on the examination results of UK medical students: a cluster randomised controlled trial

    Get PDF
    Background: Ethnic minority (EM) medical students and doctors underperform academically, but little evidence exists on how to ameliorate the problem. Psychologists Cohen et al. recently demonstrated that a written self-affirmation intervention substantially improved EM adolescents' school grades several months later. Cohen et al.'s methods were replicated in the different setting of UK undergraduate medical education.Methods: All 348 Year 3 white (W) and EM students at one UK medical school were randomly allocated to an intervention condition (writing about one's own values) or a control condition (writing about another's values), via their tutor group. Students and assessors were blind to the existence of the study. Group comparisons on post-intervention written and OSCE (clinical) assessment scores adjusted for baseline written assessment scores were made using two-way analysis of covariance. All assessment scores were transformed to z-scores (mean = 0 standard deviation = 1) for ease of comparison. Comparisons between types of words used in essays were calculated using t-tests. The study was covered by University Ethics Committee guidelines.Results: Groups were statistically identical at baseline on demographic and psychological factors, and analysis was by intention to treat [intervention group EM n = 95, W n = 79; control group EM n = 77; W n = 84]. As predicted, there was a significant ethnicity by intervention interaction [F(4,334) = 5.74; p = 0.017] on the written assessment. Unexpectedly, this was due to decreased scores in the W intervention group [mean difference = 0.283; (95% CI = 0.093 to 0.474] not improved EM intervention group scores [mean difference = -0.060 (95% CI = -0.268 to 0.148)]. On the OSCE, both W and EM intervention groups outperformed controls [mean difference = 0.261; (95% CI = -0.047 to -0.476; p = 0.013)]. The intervention group used more optimistic words (p < 0.001) and more "I" and "self" pronouns in their essays (p < 0.001), whereas the control group used more "other" pronouns (p < 0.001) and more negations (p < 0.001).Discussion: Cohen et al.'s finding that a brief self-affirmation task narrowed the ethnic academic achievement gap was replicated on the written assessment but against expectations, this was due to reduced performance in the W group. On the OSCE, the intervention improved performance in both W and EM groups. In the intervention condition, participants tended to write about themselves and used more optimistic words than in the control group, indicating the task was completed as requested. The study shows that minimal interventions can have substantial educational outcomes several months later, which has implications for the multitude of seemingly trivial changes in teaching that are made on an everyday basis, whose consequences are never formally assessed

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    The versatile CubeSat Telescope: going to large apertures in small spacecraft

    No full text
    The design of a CubeSat telescope for academic research purposes must balance complicated optical and structural designs with cost to maximize performance in extreme environments. Increasing the CubeSat size (eg. 6U to 12U) will increase the potential optical performance, but the cost will increase in kind. Recent developments in diamond-turning have increased the accessibility of aspheric aluminum mirrors, enabling a cost-effective regime of well-corrected nanosatellite telescopes. We present an all-aluminum versatile CubeSat telescope (VCT) platform that optimizes performance, cost, and schedule at a relatively large 95 mm aperture and 0.4 degree diffraction limited full field of view stablized by MEMS fine-steering modules. This study features a new design tool that permits easy characterization of performance degradation as a function of spacecraft thermal and structural disturbances. We will present details including the trade between on- and off-axis implementations of the VCT, thermal stability requirements and finite-element analysis, and launch survival considerations. The VCT is suitable for a range of CubeSat borne applications, which provides an affordable platform for astronomy, Earth-imaging, and optical communications.Comment: 11 pages, 9 figures, published in Optical Engineering + Applications conference in SPIE Optics + Photonics San Diego 202

    Benzoate- and Salicylate-Tolerant Strains of Escherichia coli K-12 Lose Antibiotic Resistance during Laboratory Evolution

    No full text
    Escherichia coli K-12 W3110 grows in the presence of membrane-permeant organic acids that can depress cytoplasmic pH and accumulate in the cytoplasm. We conducted experimental evolution by daily diluting cultures in increasing concentrations of benzoic acid (up to 20 mM) buffered at external pH 6.5, a pH at which permeant acids concentrate in the cytoplasm. By 2,000 generations, clones isolated from evolving populations showed increasing tolerance to benzoate but were sensitive to chloramphenicol and tetracycline. Sixteen clones grew to stationary phase in 20 mM benzoate, whereas the ancestral strain W3110 peaked and declined. Similar growth occurred in 10 mM salicylate. Benzoate-evolved strains grew like W3110 in the absence of benzoate, in media buffered at pH 4.8, pH 7.0, or pH 9.0, or in 20 mM acetate or sorbate at pH 6.5. Genomes of 16 strains revealed over 100 mutations, including single-nucleotide polymorphisms (SNPs), large deletions, and insertion knockouts. Most strains acquired deletions in the benzoate-induced multiple antibiotic resistance (Mar) regulon or in associated regulators such as rob and cpxA, as well as the multidrug resistance (MDR) efflux pumps emrA, emrY, and mdtA Strains also lost or downregulated the Gad acid fitness regulon. In 5 mM benzoate or in 2 mM salicylate (2-hydroxybenzoate), most strains showed increased sensitivity to the antibiotics chloramphenicol and tetracycline; some strains were more sensitive than a marA knockout strain. Thus, our benzoate-evolved strains may reveal additional unknown drug resistance components. Benzoate or salicylate selection pressure may cause general loss of MDR genes and regulators. Benzoate is a common food preservative, and salicylate is the primary active metabolite of aspirin. In the gut microbiome, genetic adaptation to salicylate may involve loss or downregulation of inducible multidrug resistance systems. This discovery implies that aspirin therapy may modulate the human gut microbiome to favor salicylate tolerance at the expense of drug resistance. Similar aspirin-associated loss of drug resistance might occur in bacterial pathogens found in arterial plaques
    corecore