12,473 research outputs found

    The group of strong Galois objects associated to a cocommutative Hopf quasigroup

    Get PDF
    Let H be a cocommutative faithfully flat Hopf quasigroup in a strict symmetric monoidal category with equalizers. In this paper we introduce the notion of (strong) Galois H-object and we prove that the set of isomorphism classes of (strong) Galois H-objects is a (group) monoid which coincides, in the Hopf algebra setting, with the Galois group of H-Galois objects introduced by Chase and Sweedler

    Electron bifurcation mechanism and homoacetogenesis explain products yields in mixed culture anaerobic fermentations

    Get PDF
    Anaerobic fermentation of organic wastes using microbial mixed cultures is a promising avenue to treat residues and obtain added-value products. However, the process has some important limitations that prevented so far any industrial application. One of the main issues is that we are not able to predict reliably the product spectrum (i.e. the stoichiometry of the process) because the complex microbial community behaviour is not completely understood. To address this issue, in this work we propose a new metabolic network of glucose fermentation by microbial mixed cultures that incorporates electron bifurcation and homoacetogenesis. Our methodology uses NADH balances to analyse published experimental data and evaluate the new stoichiometry proposed. Our results prove for the first time the inclusion of electron bifurcation in the metabolic network as a better description of the experimental results. Homoacetogenesis has been used to explain the discrepancies between observed and theoretically predicted yields of gaseous H2 and CO2 and it appears as the best solution among other options studied. Overall, this work supports the consideration of electron bifurcation as an important biochemical mechanism in microbial mixed cultures fermentations and underlines the importance of considering homoacetogenesis when analysing anaerobic fermentations

    Concrete Swelling in Existing Dams

    Full text link
    Several chemical reactions are able to produce swelling of concrete for decades after its initial curing, a problem that affects a considerable number of concrete dams around the world. Principia has had several contracts to study this problem in recent years, which have required reviewing the state-of-the-art, adopting appropriate mathematical descriptions, programming them into user routines in Abaqus, determining model parameters on the basis of some parts of the dams’ monitored histories, ensuring reliability using some other parts, and finally predicting the future evolution of the dams and their safety margins. The paper describes some of the above experience, including the programming of sophisticated non-isotropic swelling models, that must be compatible with cracking and other nonlinearities involved in concrete behaviour. The applications concentrate on two specific cases, an archgravity dam and a double-curvature arch dam, both with a long history of concrete swelling and which, interestingly, entailed different degrees of success in the modelling effort

    Melt Blending with Thermoplastic Starch

    Get PDF

    Segregation-induced grain boundary electrical potential in ionic oxide materials: A first principles model

    Get PDF
    A first principles continuum analytical model for cationic segregation to the grain boundaries in complex ceramic oxides is presented. The model permits one to determine the electric charge density and the segregation-induced electric potential profiles through the grain and can be extrapolated to the range of nanostructured grain sizes. The theoretical predictions are compared with existing data for yttria-stabilized tetragonal zirconia polycrystals. The implications for physical properties (mainly high temperature plasticity and hardening behaviour) are then discussed.Gobierno de España MAT2009-14351-C02-01, MAT2009-14351-C02-0
    • 

    corecore