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THE GROUP OF STRONG GALOIS OBJECTS ASSOCIATED
TO A COCOMMUTATIVE HOPF QUASIGROUP

JosE N. ALONSO ALVAREZ, RAMON GONZALEZ RODRIGUEZ,
AND JOSE M. FERNANDEZ VILABOA

ABSTRACT. Let H be a cocommutative faithfully flat Hopf quasigroup in
a strict symmetric monoidal category with equalizers. In this paper we
introduce the notion of (strong) Galois H-object and we prove that the set
of isomorphism classes of (strong) Galois H-objects is a (group) monoid
which coincides, in the Hopf algebra setting, with the Galois group of
H-Galois objects introduced by Chase and Sweedler.

Introduction

Let R be a commutative ring with unit. The notion of Galois H-object for
a commutative, cocommutative Hopf R-algebra H, which is a finitely gener-
ated projective R-module, is due to Chase and Sweedler [7]. As was pointed
by Beattie [4], although the discussion of Galois H-objects in [7] is limited
to commutative algebras, the main properties can be easily extended to non
commutative algebras. One of more relevant is the following: if H is cocom-
mutative, the isomorphism classes of Galois H-objects form a group denoted
by Gal(R, H). The product in Gal(R, H) is defined by the kernel of a suitable
morphism and the class of H is the identity element. This construction can
be extended to symmetric closed categories with equalizers and coequalizers
working with monoids instead of algebras and some of the more important
properties and exact sequences involving the group Gal(R, H) were obtained
in this categorical setting ([9], [13], [14]).

An interesting generalization of Hopf algebras are Hopf quasigroups intro-
duced by Klim and Majid in [8] in order to understand the structure and
relevant properties of the algebraic 7-sphere. They are not associative but the
lack of this property is compensated by some axioms involving the antipode.
The concept of Hopf quasigroup is a particular instance of the notion of unital
coassociative H-bialgebra introduced in [11] and includes the example of an
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enveloping algebra U(L) of a Malcev algebra (see [8]) as well as the notion of
quasigroup algebra RL of an I.P. loop L. Then, quasigroups unify I.P. loops
and Malcev algebras in the same way that Hopf algebras unified groups and
Lie algebras.

In this paper we are interested to answer the following question: is it pos-
sible to extend the construction of Gal(R, H) to the situation where H is a
cocommutative Hopf quasigroup? in other words, can we construct in a non-
associative setting a group of Galois H-objects? The main obstacle to define
the group is the lack of associativity because we must work with unital mag-
mas, i.e., objects where there exists a non-associative product with unit. As
we can see in the first section of this paper, Hopf quasi groups are examples of
these algebraic structures.

The paper is organized as follows. We begin introducing the notion of right
H-comodule magma, where H is a Hopf quasigroup, and defining the product
of right H-comodule magmas. In the second section we introduce the notions
of Galois H-object and strong Galois H-objects proving that, with the product
defined in the first section for comodule magmas, the set of isomorphism classes
forms a monoid, in the case of Galois H-objects, and a group when we work with
strong Galois H-objects. In this point it appears the main difference between
our Galois H-objects and the ones associated to a Hopf algebra because in
the Hopf algebra setting the inverse of the class of a Galois H-object A is
the class of the opposite Galois H-object A°P; while in the quasigroup context
this property fails. We only have the following: the product of A and A is
isomorphic to H only as comodules. To obtain an isomorphism of magmas we
need to work with strong Galois H-objects. Then, the strong condition appears
in a natural way and we want to point out that in the classical case of Galois
H-objects associated to a Hopf algebra H all of them are strong. Finally, in the
last section, we study the connections between Galois H-objects and invertible
comodules with geometric normal basis.

Throughout this paper C denotes a strict symmetric monoidal category with
equalizers where ® denotes the tensor product, K the unit object and ¢ the
symmetry isomorphism. We denote the class of objects of C by |C| and for each
object M € |C|, the identity morphism by idy : M — M. For simplicity of
notation, given objects M, N and P in C and a morphism f : M — N, we
write P® f for idp ® f and f ® P for f ® idp. We will say that A € |C| is flat
if the functor A ® — : C — C preserves equalizers. If moreover A ® — reflects
isomorphisms we say that A is faithfully flat.

By a unital magma in C we understand a triple A = (A,na,pa) where A
is an object in C and n4 : K — A (unit), pa : A® A — A (product) are
morphisms in C such that ps o (A ®na) = ida = pao (na ® A). If py is
associative, that is, g o (A ® pa) = pa o (pa ® A), the unital magma will
be called a monoid in C. For any unital magma A with A we will denote the
opposite unital magma (A, 7 = 14, pg = pacca,a). Given two unital magmas
(monoids) A = (A,na,pa) and B = (B,np, uB), f : A — B is a morphism of
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unital magmas (monoids) if ugo (f® f) = foua and fona = np. By duality,
a counital comagma in C is a triple D = (D,ep,dp) where D is an object in C
and ep : D — K (counit), 0p : D — D ® D (coproduct) are morphisms in C
such that (ep ® D)odp = idp = (D ®ep)odp. If 0p is coassociative, that is,
(bp®D)odp = (DRdp)odp, the counital comagma will be called a comonoid.
If D= (D,ep,0p) and E = (FE,ep,0g) are counital comagmas (comonoids),
f: D — E is morphism of counital magmas (comonoids) if (f® f)odp =dgo f
and ego f =ep.

Finally note that if A, B are unital magmas (monoids) in C, the object A® B
is a unital magma (monoid) in C where nagp = 1a®np and pags = (LA®uE)o
(A®cp a® B). With A® we will denote the unital magma A® A. In a dual way,
if D, E are counital comagmas (comonoids) in C, D® E is a counital comagma
(comonoid) in C where epgr = ep®ep and dpgr = (D®cp @ F)o(dp ®IE).

1. Comodule magmas for Hopf quasigroups

This first section is devoted to the study of the notion of H-comodule magma
associated to a Hopf quasigroup H. We will show that, as in the Hopf algebra
setting, it is possible to define a product using suitable equalizers which induces
a monoidal structure in the category of flat H-comodule magmas.

The notion of Hopf quasigroup was introduced in [8] and the following is its
monoidal version.

Definition 1.1. A Hopf quasigroup H in C is a unital magma (H,ng, py) and
a comonoid (H,ep, dp) such that the following axioms hold:

(al) em and dy are morphisms of unital magmas.
(a2) There exists Ay : H — H in C (called the antipode of H) such that:
(a2-1)  pmo(Ag @ pu)o (6 ® H)
—eg®H

=pgo(H®@pug)o(HR Ay @ H)o (6y @ H).
(a2-2)  ppgo(ug @H)o(HR®Ag @ H)o (H ®dp)

=H®cey

=pgo(pg @Ag)o (H®dm).

If H is a Hopf quasigroup, the antipode is unique, antimultiplicative, anti-
comultiplicative and leaves the unit and the counit invariable:

(1) Agoprg =proAg®Ag)ocan, Omolg=cunro(Ay®Ag)ody,

(2) AHONH =MNH, €EHOAH =€H
([8], Proposition 4.2 and [10], Proposition 1). Note that by (a2),

(3) pr o (Ag ®idp)ody = pgo(idg @A) o0y =ep @ np.
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A Hopf quasigroup H is cocommutative if ¢y g o dg = dy. In this case, as
in the Hopf algebra setting, we have that Ay o Ay = idy (see Proposition 4.3
of [8]).

Let H and B be Hopf quasigroups. We say that f : H — B is a morphism
of Hopf quasigroups if it is a morphism of unital magmas and comonoids. In
this case A o f = f o Ay (see Proposition 1.5 of [1]).

Examples 1.2. The notion of Hopf quasigroup was introduced in [8] and it can
be interpreted as the linearization of the concept of quasigroup. A quasigroup
is a set @ together with a product such that for any two elements u,v € @ the
equations ux = v, xu = v and wv = x have unique solutions in Q. A quasigroup
L which contains an element ej, such that ue;, = v = epu for every u € L is
called a loop. A loop L is said to be a loop with the inverse property (for
brevity an I.P. loop) if and only if, to every element u € L, there corresponds
an element u~! € L such that the equations u™!(uv) = v = (vu)u~! hold for
every v € L.

If L is an I.P. loop, it is easy to show (see [5]) that for all u € L the element
u~ ! is unique and v~ u = ey, = uu~'. Moreover, for all u, v € L, the equality
(uv)~! = v~ tu~! holds.

Let R be a commutative ring and L and I.P. loop. Then, by Proposition 4.7

of [8], we know that
RL =P Ru
u€eL

is a cocommutative Hopf quasigroup with product given by the linear extension
of the one defined in L and

5RL('UJ) =u®u, ERL(U) = 1g, )\RL(U) =u!
on the basis elements.

Now we briefly describe another example of Hopf quasigroup constructed
working with Malcev algebras (see [12] for details). Consider a commutative
and associative ring K with £ and % in K. A Malcev algebra (M, [, ]) over
K is a free module in K-Mod with a bilinear anticommutative operation [, ]
on M satisfying that [J(a,b,c),a] = J(a,b,[a,c]), where J(a,b,c) = [[a,b],c] —
[[a, c], b]—[a, [b, c]] is the Jacobian in a, b, c. Denote by U (M) the not necessarily
associative algebra defined as the quotient of K{M}, the free non-associative
algebra on a basis of M, by the ideal I(M) generated by the set {ab — ba —
[a,b], (a,z,y) + (z,a,y), (z,a,y) + (x,y,a) : a,b € M,x,y € K{M}}, where
(z,y,2) = (xy)z — x(yz) is the usual additive associator.

By Proposition 4.1 of [12] and Proposition 4.8 of [8], the diagonal map
Suy 2 UM) — U(M) ® U(M) defined by dyy(r) = 1®@ 2 +2® 1 for
all z € M, and the map ey : U(M) — K defined by ey (z) = 0 for
all x € M, both extended to U(M) as morphisms of unital magmas; together
with the map Ay @ U(M) — U(M), defined by Ayy(z) = —= for all
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x € M and extended to U(M) as an antimultiplicative morphism, provide a
cocommutative Hopf quasigroup structure on U(M).

Definition 1.3. Let H be a Hopf quasigroup and let A be a unital magma
(monoid) with a right coaction ps : A - A® H. We will say that A = (A, pa)
is a right H-comodule magma (monoid) if (A, pa) is a right H-comodule (i.e.,
(pa®@H)ops = (ARdp)opa, (ARey)opa =ida), and the following identities

(b1) paona=mna®@nmu,

(b2) paopa = pasn ©(pa® pa),
hold.

Obviously, if H is a Hopf quasigroup, the pair H = (H,dy) is an example of
right H-comodule magma.

Let A, B be right H-comodule magmas (monoids). A morphism of right
H-comodule magmas (monoids) f : A — B is a morphism f : A — B in C of
unital magmas (monoids) and right H-comodules, that is (f®@ H)opa = pgo f.

Remark 1.4. Note that, if H is cocommutative, every endomorphism « : H — H
of right H-comodule magmas is an isomorphism. Indeed: First note that by
the comodule condition and the cocommutativity of H we have a = ((egoa)®
H)odyg=(H® (egoa))ody and then o = (H @ (egr oo Agr)) o dp is the
inverse of a because by the properties of H:

doa=aocd =(H® (((egoa)@(egoaodyg))ody))ody
=(H® (egoaougo(H@Ag)ody))ody

=1dy.

Proposition 1.5. Let H be a Hopf quasigroup and A, B right H-comodule
magmas. The pairs A@1B = (A® B, pliop = (AQch,p)o(pa®B)), AR B =
(A® B, p?4®B = A® pp) are right H-comodule magmas. Moreover A ®1 B and
B ®9 A are isomorphic right H-comodule magmas.

Proof. We give the proof only for A®;B. The calculus for A®sB are analogous
and we left to the reader. First note that the object A® B is a unital magma in
C. On the other hand, the pair (A ® B, p}4®3) is a right H-comodule because
trivially (AQ B®eg) o p}4®B = idagp and using the naturality of ¢ we obtain
that (phep®H)ophgp = (AR )opag . Moreover, phg ponics = NAoB®NH
and also by the naturality of ¢ we have p}4®B otiaen = (ags @ ) o (A®
B®cpagp @ H) o (p}4®B ® p}4®B). Finally, ca,p is an isomorphism of right
H-comodule magmas between A ®; B and B ®5 A because by the naturally of
¢ we obtain that ca g o Nagp = NBoA, BoA © (CA.B ® CAB) = CAB © lAoB
andpQB®AocA73:(cA13®H)op}4®B. O

Proposition 1.6. Let H be a cocommutative Hopf quasigroup and A a right
H-comodule magma. Then A = (A, px = (A®Ag)opa) is a right H-comodule
magma.
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Proof. Trivially (A® ep) o py =ida. Using that H is cocommutative and (1)
we obtain (p5 ® H) o pzr = (A® dm) o px. Moreover by (bl) of Definition 1.3
and (2), the identity pxona =na @ ng holds. Finally, by the naturality of c,
(b2) of Definition 1.3 and (1) the equality pz o iz = pzgy © (pz ® pz) follows
easily. (I

Proposition 1.7. Let H be a Hopf quasigroup and A, B right H-comodule
magmas. The object A @ B defined by the equalizer diagram

1
PAgB

AeB

A®B AR B®H,

b
PAagB

where p}4®B and p124®B are the morphisms defined in Proposition 1.5, is a
unital magma where Naep and aep are the factorizations through isep of the
morphisms Nagp and pagp o (iaep ®isen) respectively. Moreover, if H is flat
and the coaction ppep : A® B — Ae B® H is the factorization of pi®B OlAeB
through i aep ® H , the pair AeB = (Ae B, paep) is a right H-comodule magma.

Proof. Trivially pho ponags = 14Q0B@ N = pAep M. Therefore, there
exists a unique morphism naep : K — A e B such that isep © Naen = NacB-
On the other hand, using the properties of p4 and pp and the naturality of ¢
we have

P}4®B o tapB © (tAaeB ®iAen)
= (HaeB @ pug) o (A® B® cyaep ® H) o ((pheap ©i4eB) ® (Pagp ©iseB))
= (Hags @ pup) o (A® B® cyagp ® H) o ((phgp ©i4e8) ® (Phagps ©iaen))

= P,24®B 0 pAeB © (14eB @ i4eB).

Then, there exists a unique morphism piep : Ao B Ae B — A e B such
that i 4ep © iaeB = tAgB © (tAeB ®iep). Moreover, tigep © (Niep @ Ae B) =
idpen = ftaep© (A®B®Mnaep) because isep 0 liaen 0 (ien @ A®B) =isep =
iAeB O laen © (A ® B®naep). Therefore, A e B is a unital magma.

Moreover,

1
iAeBRH Pagp®H

Ae B H

ARB® H ARB®H®H

P%\@B‘@H

is an equalizer diagram, because —® H preserves equalizers, and by the proper-
ties of p4 and pp and the naturally of ¢ we obtain (pyg 5 ® H)o0p%gp0isen =
(Phep @ H) o pYgp ©iaen. As a consequence, there exists a unique morphism
pPrep : Ae B — AeB® H such that (isep @ H) 0 paen = p124®B otaen. Then,
the pair (Ae B, paep) is a right H-comodule because (i4e5REH)0pAeB = iAeB
and also (((isen @ H) 0 paen) @ H) o paen = (iaen ®01) 0 paep- Finally, (bl)
and (b2) of Definition 1.3 follow, by a similar reasoning, from (isep ® H) o
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PaeB ©Naer = (iaen ® H) o (Naep @ ni) and (isep ® H) © paep © [Laen =
(iaeB @ H) 0 liaepem © (PAeB ® paeB). (]

Proposition 1.8. Let H be a flat Hopf quasigroup and f : A — B, g: T —> D
morphisms of right H-comodule magmas. Then the morphism feg: AelT —
Be D, obtained as the factorization of (f ® g) oiser : AeT — B® D through
the equalizer ipep, is a morphism of right H-comodule magmas between A o T
and B e D. Moreover, if f and g are isomorphisms, so is f e g.

Proof. Using that f and g are comodule morphisms we obtain p}3® po(f®g)o
TAeT = sz® po(f®g)oiser and as a consequence there exist a unique morphism
(feg): AeT — BeD such that ipepo(feg) = (f®g)oiser. The morphism feg
is a morphism of unital magmas because ipep ©1Ben = iBen o (f®g)onaer and
for the product the equality ipepopeno ((feg)R(feg)) =ipeno(feg)oiaer
holds. Also, it is a comodule morphism because (igep @ H) 0 ppep o (f e g) =
(ipep ® H) o ((f ®9) ® H) 0 paer-

Finally, it is easy to show that, if f and g are isomorphisms, f e g is an
isomorphism with inverse f~! e g~ O

Proposition 1.9. Let H be a flat Hopf quasigroup and A, B right H-comodule
magmas. Then A eB and B e A are isomorphic as right H-comodule magmas.

Proof. First note that by the naturally of ¢ and the properties of the equaliser
morphism i4p We have that p}3®A 0CABOiAeB = p2B®A 0ca B ©isen and
then there exists a morphism 74,5 : A B — B e A such that ige4 0 74,5 =
cA,BO% aep. Also there exists an unique morphism 75 4 : BeA — AeB such that
1AeBOTB,A = CB,A%TBeA- TheN i 4eBOTB,AOTA,B = CB,AOCA,BOTAeB = tAeB and
similarly igea © 74,8 07TB,A = iBea. Thus T4 p is an isomorphism with inverse
TB,A- MoOreover, iBeA©TA,BONAeB = CA,BOlAeBONAeB = BRA = 1BeAOTBeA
and

iBeAOTABO llAeB = UBxA © ((CA,BOlaeB) ® (CA,BOi4en))
= uB2A©° ((1Bea ©TA,B) ® (IBea ©TA.B))
= iBeA O [lBeA © (TA,B ®TARB).

Therefore, 74, p is a morphism of unital magmas and finally it is a morphism of
right H-comodules because ((ipea©T4,8)®H)opsen = (1BeARH )0pBea©TA B-
O

Proposition 1.10. Let H be a flat Hopf quasigroup and A, B, D right H-
comodule magmas such that A and D are flat. Then Ao (BeD) and (AeB)eD
are tsomorphic as right H-comodule magmas.

Proof. First, note that

1
A®iBeD A®PBoD

AR BeD

AR B®D ARBRD®H

A®/)23®D
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and
(A®B®cH,p)o(phgp®D)

A®B®D ARB®D®H
(A®B®cH,p)o(phgp®D)

iAeBQ®D

AeB®D

are equalizer diagrams because A and D are flat and A ® B ® ¢y, p an isomor-
phism. On the other hand, it is easy to show that

(A®ipep © H) 0 pagpep = (A® B@cu,p) o (pagp © D) o (A@ipen)
and
(A®ipep @ H) 0 phgpep = (A® B@cup) o (Phep © D)o (AR ipen).
Therefore
(A ®B® CH,D) © (P}4®B & D) o (A ® iBoD) © iAo(BoD)
= (A@B ®CH,D> ¢} (p124®B ®D) o (A@iB.D) OiAo(BoD)

and as a consequence there exists a unique morphism h : Ae (Be D) —
(A e B)® D such that

(4) (iaeB®D)oh = (A®iBep)©iAe(BeD)-
The diagram

h pihB@D

(AeB)® D

Ae(BeD) AeB®D®H

2
PAeBRD

is an equalizer diagram. Indeed, it is easy to see that pl, o poh = plagepoh
and, if f : C — Ae B® D is a morphism such that p%A.B)®Dof = p%A.B)®Dof,
we have that
(A® ppgp) o (iaen @ D)o f = (A® ppgp) o (iaep © D)o f

because

(A® ppgp) © (iae ® D) = (iae @ D® H) 0 phepen
and

(A® pQB®D) o (inep ® D) = (inep ®D® H) 0 P,24.B®D-
Then, there exists a unique morphism ¢ : C' — A® Be D such that (ARipep)o

t = (iaep ® D)o f. The morphism ¢ factorizes through the equalizer i so(ep)
because

(A®ipep @ H) 0 pagpep 0t = (AR ipep @ H) 0 phgpep ©1
and then
/),14®B.D ot = P,24®B.D ot

holds. Thus, there exists a unique morphism g : C' — A o (B e D) satisfying
the equality iqe(Bep) © g = t. As a consequence

(iaeB®D)ohog=(A®ipen) Oie(BeD) g
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:(A@iB.D>Ot:(iAoB®D>Of

and then h o g = f. Moreover, g is the unique morphism such that ho g = t,
because if d : C' — Ae(BeD) satisfies hod = f, we obtain that i s(gepyod =t
and therefore d = g.
As a consequence, there exists an isomorphism napc : Ae (Be D) —
(A e B) e D such that
(5) i(AeB)eD ©NA B,D = h.
The isomorphism n4 g ¢ is a morphism of unital magmas because by (4),
(5) and the naturality of ¢ we have
(iaeB ® D) 0i(AeB)eD ©A,B,D © NAe(BeD)
= (i4eB ®@ D) 0 honae(BeD)
= (A®iBeD) ©iAe(BeD) © NAe(BeD)
=1NAQNB X ND
= (i4eB ® D) 0i(AeB)eD © N(AeB)eD

and

(iaeB ® D) 0i(AeB)eD ©MA,B,D © [LAe(BeD)

= (iaeB ® D) 0 h o liae(BeD)

= (A®iBeD) ©iAe(BeD) © [LAs(BeD)
= (A®1iBeD) © hax(BeD) © (i4e(BeD) ® i Ae(BeD))

taeBeD © ((A®iBen) ©ise(Ben)) ® ((A®iBeD) ©iAe(BeD)))
pagseD © (((iaep @ D)o h) @ ((iaep ® D) o h))

iaeB @ D)o piaegp © (h @ h)

(i
(iaeB ® D)o piaeBop © ((i(aeB)eD ©104,B,c) @ (i(AeB)eD ©NA,B,C))
(i

i4eB ® D) 0i(AeB)eD © Ii(AeB)eD © (A, B.D ®NA B D)

Finally, using a similar reasoning, we obtain that n4 g ¢ is a morphism of right
H-comodules because

(iaeB®@ D ® H) o (i(aeB)ep @ H) © p(aeB)eD ©NA,B.D

= (A® B®pp)o(iseB ® D) oi(sep)jen ©14,B,C
=(A®B®pp)o(iae®@D)oh

= (A®B®pp)o(AR®iBen)Oie(BeD)

= (A®ipep ® H) 0 (A® pBep) ©iAe(BeD)

= (A®iBep ® H) 0 (ige(Ben) ® H) © pre(BeD)

(iaeB@D®@H)o(h® H) o pae(Ben)

= (1ae ® D ® H) 0 (i(aep)ep @ H) 0 (na,B,0 ® H) © pre(BeD)- 0
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Proposition 1.11. Let H be a cocommutative Hopf quasigroup and A a right
H-comodule magma. Then

1
p
oA A®H

A AR H
(6) P124®H

is an equalizer diagram. If H is flat A e H and A are isomorphic as right
H -comodule magmas.

A9 H®H,

Proof. We will begin by showing that (6) is an equalizer diagram. Indeed, if H
is cocommutative we have that p}4®HopA = (A®(cy gody))opa = p124®HOpA.
Moreover, if there exists a morphism f : D — A ® H such that p}4®H of =
/)?4®H o f, we have that pg o (A®ep)o f = f andif g: D — A is a morphism
such that py o g = f this gives g = (A® ep) o f. Therefore there is a unique
isomorphism r4 : A e H — A satisfying paora =isen-

In the second step we show that 74 is a morphism of right H-comodule
magmas. Trivially, 74 0o nqe = N4 because p4 074 0 NaeH = TAeH © NAeH =
NARNH = paona. Also pao(ra®ra) =raouen because paopuso(ra®ra) =
pPAOTAO igerr and as a consequence r4 is a morphism of unital magmas.
Finally, the H-comodule condition follows from ((pa ©74) ® H) 0 paen =
(pA@H)OPAOTA- O

Remark 1.12. Note that, under the conditions of the previous proposition, the
coaction for A e H is i4¢5. On the other hand, Proposition 1.11 gives that

1
PHQH

H

H®H AR H®H,

2
PHOH
is an equalizer diagram.

Proposition 1.13. Let H be a cocommutative Hopf quasigroup and Mag¢(C,
H) be the category whose objects are flat H-comodule magmas and whose arrows
are the morphism of H-comodule magmas. Then Mags(C,H) is a symmetric
monoidal category.

Proof. The category Mags(C, H) is a monoidal category with the tensor prod-
uct defined by the product “e” introduced in Proposition 1.7, with unit HI,
with associative constraints as gp = n;}B’D, where n 4, p is the isomorphism
defined in Proposition 1.10, and right unit constraints and left unit constraints
ta =74, l4 =74 0TH, 4 respectively, where r4 is the isomorphism defined in
Proposition 1.11 and 7y 4 the one defined in Proposition 1.9. It is easy but
tedious, and we leave the details to the reader, to show that associative con-
straints and right and left unit constraints are natural and satisfy the Pentagon
Axiom and the Triangle Axiom. Finally the tensor product of two morphisms
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is defined by Proposition 1.8 and, of course, the symmetry isomorphism is the
transformation 7 defined in Proposition 1.9. O

2. The group of strong Galois objects

The aim of this section is to introduce the notion of strong Galois H-object
for a cocommutative Hopf quasigroup H. We will prove that the set of isomor-
phism classes of strong H-Galois objects is a group that becomes the classical
Galois group when H is a cocommutative Hopf algebra.

Definition 2.1. Let H be a Hopf quasigroup and A a right H-comodule
magma. We will say that A is a Galois H-object if

(c1) A is faithfully flat.

(c2) The canonical morphism y4 = (ua @ H) o (AQ pa): AQA— AQH

is an isomorphism.
If moreover, f4 =7, o (na ® H) : H — A° is a morphism of unital magmas,
we will say that A is a strong Galois H-object.

A morphism between to (strong) Galois H-objects is a morphism of right
H-comodule magmas.

Note that if A is a strong Galois H-object and B is a Galois H-object iso-
morphic to A as Galois H-objects, then B is also a strong Galois H-object
because if g : A — B is the isomorphism, we have ypo (g ®g) = (g ® H) o y4
and it follows that fp = (g®g)o fa. Then, fp is a morphism of unital magmas
and B is strong.

Example 2.2. If H is a faithfully flat Hopf quasigroup, H is a strong Galois
H-object because v = (g ® H) o (H ® 0gr) is an isomorphism with inverse
fy;Il = ((,UH o (H®>\H))®H)O(H®5H) and fg = (/\H ®H)O5H :H — H¢
is a morphism of unital magmas.

Remark 2.3. If H is a Hopf algebra and A is a right H-comodule monoid, we
say that A is a Galois H-object when A is faithfully flat and the canonical
morphism 74 is an isomorphism. In this setting every Galois H-object is a
strong Galois H-object because

Yaopac o (V4" o (na ® H)) ® (v o (na ® H)))
= (1A ®@ H) o (A® pagn) o (A® (yaovy o (na ® H)) @ pa)
o (cma @ A) o (H & (3" o (na @ H)))
= (A®pm)o(cra®H) o (H® (yaovy,' o (na® H)))
=NaAQpuH
=407, (14 ® pm),

where the equalities follow by (b2) of Definition 1.3, the naturality of ¢ and the
associativity of p4.
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Proposition 2.4. Let H be a Hopf quasigroup and A a Galois H-object. Then

na pA
K A A®H
(7) A®ng
s an equalizer diagram.
Proof. First note that
A AR A ARA®A
ARna®A

is an equalizer diagram. Then, using that A is faithfully flat, so is

nA A®na
A A® A.
na® A

K

On the other hand, y4 0 (A®n4a) = A®nu, ya 0 (na ® A) = pa. Therefore,
if v4 is an isomorphism, (7) is an equalizer diagram. (]

Lemma 2.5. Let H be a Hopf quasigroup and let A a Galois H-object. The
following equalities hold:

(1) Phoacra = (va' @ H)o (A®x).

(i) phonors! = (13 ©H)o(ABen m)o(Apun ©H)o(pa®(An @ H)obx)).
Proof. The proof for (i) follows from the identity (y4 ® H)op% o4 = (A®dm)o
~v4. To obtain (ii), first we prove that
8) (A®ur@H)o(pa®((Au@H)odm))ova = (A®cum)o(ya®H)opyga-
Indeed,

(A®pg @ H)o (pa® ((Au ® H) 0 0p)) 0va

= (A® (p o (pa ®Am)o(H®@6n)) @ H) o (na® H® dn)
o(A®caa®@H)o(pa®pa)

=(pa®@H®@ ((en®@H)odn))o(A®cua®H)o(pa®pa)

= (A ®H@H)o(A®cr,a®H)o (pa®pa)

= (na @ cum) o (Phoa @ H) 0 phga

=(A®cuu)o(ya® H)o P}4®Aa

where the first equality follows by the comodule condition for A, the second one

by (a2-2) of Definition 1.1, the third one by the counit condition, the fourth
and the last ones by the symmetry of ¢ and the naturality of the braiding.



THE GROUP OF STRONG GALOIS OBJECTS 529

Then, by (8) we obtain
Phga©Va
=(y4'®@H)o(A® (cymocum))o(ya®H)ophgaova'
=(v1'®H)o(A®cupm)o(A® g ® H) o (pa® (Ag ® H) 0 6n))
and (i) holds. O

Proposition 2.6. Let H be a cocommutative faithfully flat Hopf quasigroup.
The following assertions hold:

(i) If A and B are Galois H-objects so is A e B.
(ii) If A and B are strong Galois H-objects so is A e B.

Proof. First we prove (i). Let A and B be Galois H-objects. By Proposition
1.7 we know that A e B is a unital magma where n4ep and psep are the
factorizations through i4ep of the morphisms nagp and pagp © (faen @ isen)
respectively. Moreover, using that H is flat we have that A e B is a right
H-comodule magma where the coaction psep : A® B — Ae B® H is the
factorization of p% 4 0 iaen (OF pligp ©iaen) through isep ® H.

The objects A and B are faithfully flat and then so is A ® B. Therefore

1
A®B®iaen A®B®Pass

ARB® AeB A®B®A®B ARBRA®B®H

A®B®p%gp

is an equalizer diagram. On the other hand, if H is cocommutative

1
A®B®SH A©BSPHgH

A®B®H

A®RBRH®H ARB®H®H®H

A®B®P§~1®H

is an equalizer diagram (see Remark 1.12).
Let Tuygp : AR BRA® B - A® B® H ® H be the morphism defined by

Fagp = (A®cup®@H)o(ya®yp)o(A®cpa® B).
Trivially I' 4o 5 is an isomorphism wit inverse
Miop=A®cap®B)o(y,' ®v5" )0 (A®cpn @ H)
and satisfies
(A® B® phgm) o Tagp o (A® BRisep)
= (1408 @ pen) © (A® B& (Pagp ©iaen) @ H) 0 paen))
= (1aes ® phen) © (A® B® ((iaep @ H@ H) 0 (paep @ H) © paep))
= (tagp ® H® (cgpodn)) o (A® B® ((1aeB ® 0H) © pAeB))
= (tagp®H ®@0p) 0 (AR B® ((irep @ H® H) o (prep ® H) 0 paen))
= (A®B® pion) o lagp o (A® B®isen),
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where the first equality follows by the naturality of ¢ and the properties of p4e5,
the second and the third ones by the comodule structure of A e B, the fourth
one by the cocommutativity of H and the last one was obtained repeating the
same calculus with p%;q .

As a consequence, there exists a unique morphism h : AQ B Ae B —
A ® B ® H such that

9) (A BRdg)oh=Tagp o (A® B®iien).

On the other hand, in an analogous way the morphism FZ%B c(A® B®
0g): AR B® H— A® B® A® B factorizes through through the equalizer
A® B ®isep because by (i) of Lemma 2.5, the naturality and symmetry of ¢
and the cocommutativity of H we have
(A® B® phgp)oligpo (A® B®dy)
= (A®cap®cup)o(A®AQcup®@B)o((A®pa)ovy') ®v5")
0o(A®cpu®H)o(A® B®dn)

= (A®cap®cup)o(A0AQcrp®B)o((vq' © H) o (A®dn)) ®75")
0o(A®cpu®H)o(A® B®dn)

= (A®cap®@BoH)o(yy @((p ®H)o(B®dn))o(A®cpn @ H)
0o (A® B®dn)

= (A®B® phgp) ol agp 0 (A® B®dp).

Thus, let g be the unique morphism such that

(10) (A®B®iA.B)og:F;(lgBo(AQ@B@(SH).

By (9) and (10)

(A B®dg)ohog=Tagpo(A® B®igen)oyg
:FA®BOF;(1®BO(A®B®(SH)
=A®R B® iy,

(AR B®isep)ogoh=T,40(A®B®dy)oh
:FZéBOFA®BO(A®B®iA.B)
=AR®B®isen

and then we obtain that h is an isomorphism with inverse g. As a consequence
A e B is faithfully flat because A, B and H are faithfully flat.

The morphism I';§, 5 0 (isep ® 6y) : A B& H—+ A® B® A® B admits
a factorization ayp : Ae B& H - A® B ® A e B through the equalizer
A ® B ® iaep because as we saw in the previous lines I'; L 5 0 (A® B ® 6x)
admits a factorization through A ® B ® isep-
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Now consider the equalizer diagram:

1
inep®AeB Pagp®AeB

AeBRAeB

ARB®AeB ARB®H®AeB

Papp®AeB
We have that
(Phon ®ieB) 0 aAB
= (Phep® A®B)o(A®cap®B)o(vy' ®5') 0 (A®cpn ® H)
© (iaeB ® )
=(A®(B®can)o(cap®H)o(A®cphB))® B)
o ((Pagr ova) @75') 0 (A® cpu @ H) o (irep @ 5p)
=(A®(B®can)o(cap®@H)o(A®cpu,p))® B)
o((va'®@H)o(A®cuu)o(A® py @ H)
o (pa®((Ag @ H) o)) @5 ) o (A® cpum ® H) o (iaep © 6n)
= (A®(B@can)o(cap®H)o(A®cnp)) @ B)o(vy' ® Hoyg')
0 (A® ((ca,ug ®B)o(pr ®cpp)o(H®cpa @ H)
o (cpu © ((Au © H)odn))) @ H) o (pagp ©iaen) @ 0n)
=(A®((B®cau)olcap@H)o(A®cyp)®B)o(v,' ® H® B® B)
o (A® ((cuu ®75") o (H@cpy ® H) o (cpy ® H® H)
o (B® ((urr o (H © \gr)) @ H) ® 1)
o ((Phop ©iaen) ® ((6n @ H) 0 dp1))
=(A® ((cup®A)o(H®cap)o(can®B))@B)o (v, ® H®vg")
0o (A® ((H®cp,ag ®@H)o (c,a® (Ca,H ©CH,H))
o(BRcug®H))o(A®BQ un @ (ca,modm))
o ((Paop ©iaen) @ (Au @ H) 08p))
=(A®((B®canu®B)o(cap®@cpu))o(va ®@vp @H)
0o(A®cpu®@cun)o(ARB® (cumo(pu @ H))® H)
o (((A® pp)oisen) @ (Au ® (cH,m ©0m)) ©01))
= (A (Becan@B)o(can®@cpn)))o (v @ ((vp ® H)
o(B®cum)o(B@pun ®@H)o(pp® (Ag @ H)odn))))
0 (A®cpu®@H)o (iaep ® (cr,m 0 dm))
= (A@((B®can)o(cap®H)o(A®pp))®B)o (v, @75")
0 (A®cpu @ H)o (isep ®0m)

= (p124®3 & iA.B) O A B,
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where the first equality follows by the definition, the second, the fourth and the
fifth ones by the naturality and symmetry of ¢, the third and the ninth ones
by (ii) of Lemma 2.5, the sixth one by the cocommutativity of H and, finally,
the eighth and the tenth ones by the naturality of c.

Then, there exists a unique morphism 4 p: Ae B H - AeB® AeB
such that

(11) (iAoB®AOB)OﬁA,B:CYA,B
and then
(12) (i4eB ®isen) o Bas=T45p0 (105 ® ).

The morphism 34, p satisfies

(iaeB @ H)oYaep 0 faB

= (ag @ H) 0 (i4eB @ ((iaep @ H) 0 paen)) 0 Ba B

= (agn @ H) o (iae ® ((A® pB) 0taen)) © BaB

= (pa®yB)o(A®cpa®B)o FA;@B (iaeB @ dm)
(((A®€H)O’7AO’YA )@BRH)o(AQcpu Q@ H)o(iaep @ dn)
=iAeB ® H

and by the cocommutativity of H we have

(408 ®i4eB) O BA,BOYVAaeB
FA®B (iaeB ® )0 (Laep @ H)o (Ae B® paes)
=T b5 o (Hags ®6n) o (isen @ (A® pp) 0 ien))

= FA;@B (A BQcupm)o (pa®@y@H)o(A®cp a® pB)

0 (iAeB @iAeB)

=(A®cap®B)o(y,' ®BR®B)o(A®cpn® B)
o(pa®B® (cgmopn))o(A®cpa®B)o (iaeB QiaeB)

=(A®cap®B)o(y,' ® B B) o (a®cpu® B)
0(A®cpa®@H®B)o (isep @ ((pa ® B) 0igen))

= (A®cap)o((73' 074) ® B)) ® B) o (A® cp,a @ B) 0 (iaep @ inen)

= i4eB D iAeB-

Taking into account that H is flat and that A e B is faithfully flat we obtain
that 54 g is the inverse of the canonical morphism y4e5.

Now we assume that A and B are strong Galois H-objects. To prove that
AeB is a strong Galois H-object we only need to show that faep : H — (AeB)°
is a morphism of unital magmas. If f4 and fp are morphisms of unital magmas,
by the properties of i 4o and the naturality of ¢ we have

(1408 ®i4eB) 0 faeponum = (A®cap®@B)o((faonu) ® (feonm))
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=NA@NBRNARNB = (iaeB @ iAeB) © 1)(AeB)e
and
(i4eB ®i4eB) © li(AeB)e © (freB ® faeB)
= (A®ca,p®B)o((pae o(fa® fa)) ® (upe o (fp ® fB)) ©dneH
=(A®ca®B)o(fa® fB)oduopm = (iaeB ®iAeB) © faeB © LH.
Therefore, faeponm = 1(Aen)c a0d [l aeB)-O(faeB® faer) = faepopn. [

Proposition 2.7. Let H be a cocommutative Hopf quasigroup and A a Galois
H-object. Then the right H-comodule magma A defined in Proposition 1.6 is
a Galois H-object. Moreover, if A is strong so is A.

Proof. To prove that A is a Galois H-object we only need to show that vg is
an isomorphism. We begin by proving the following identity:

(13) (A® (procauo(Ag @ H)))o(pa®H)oya=vz0caa.
Indeed:
(A® (pa ocmo Ay @H)))o(pa®H)ova
= (pa® pro(HRpug)o(cuu @ H)o(H®cy,p)o (cuu ®H)
oc(Ag®@Ag @ H)o (H ®0y))) o (A®cra®H)o (pa® pa)
=pa®proPug@uu)o(dg®@H)ocy oAy H)))
o(A®CH7A®H)O (PA ®pA)
= (pa®@H) o (A®cph,a)o (pz @ A)
= ygoca,a,
where the first equality follows by (b2) of Definition 1.3, (1) and the naturality
of ¢, the second one by the cocommutativity of H and the naturality of ¢, the
third one by (a2-1) of Definition 1.1 and the last one by the symmetry and
naturality of c.
Define the morphism 7% : A®@ H — A® A by
(14) Yi=caaovy o (A® (uuocmm))o(pa® H).
Then, by (13), the naturality of ¢, the cocommutativity of H and (a2-2) of
Definition 1.1, we have the following:
YA° V%
=rg0ca407; ©(A® (umocnm))o(pa®H)
= (A® (pg ocam o (An ® H))) o (pa® (pu o chm)) o (pa® H)
= (A® (ugo(ug @ H)o (H®cu,m)o (cug @ H) oAy @ cum)
o (63 © H))) o (pa @ H)
= (A ((pao(py @ H)o (HR Ay @ H)o (H ®dp))ochn))o(pa®H)

=idagH-
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Moreover, by a similar reasoning but using (a2-1) of Definition 1.1 instead of
(a2-2) we obtain

YZOVA

canoyy o((naocan)®@ (puo(H@py)o(H®Ay @ H)
o(dg®@H)ocyu))o(A®cya®H)o(pa®pa)

-1
=CA,AQ7Y, ©YAOCAA

= idaga.

Therefore, v is an isomorphism and A a Galois H-object.
Finally, it is easy to show that f4 = ca,4 0 fa. Then, if f4 is a morphism
of unital magmas, so is f5. Thus if A is strong, A is strong. (]

Proposition 2.8. Let H be a cocommutative flat Hopf quasigroup and A a Ga-
lois H-object. Then A e A is isomorphic to H as right H-comodules. Moreover,
if A is strong, the previous isomorphism is a morphism of right H-comodule
magmas.

Proof. First note that, by Proposition 2.4, we know that (7) is an equalizer
diagram and then so is

pA®H
AR H A H®H
A®ng @ H

na®H

because H is flat. For the morphism v 04 ,,5: Ae A:— A® H we have the
following:
(pa@H)oygoiysgg
= (tagm @A) 0 (pa ® (A®dH) 0 pa)) 0isgzg
= (tzeg @ An) o (A®H® (A®dm) o pa))
o (A®(camo(A®An)opa))oiygg
= (hz@ug®Ag)o(A® (A® H®dy)o (A®chn)
o (A®((H®Ag)odn))))o(A®pa)oisgz
= (px ® ((pr o (Ag @ H) 0 65) ® An) 0 011)) 0 (A® pa) 0 iz
=(A®ng @ H) oy 010,47

where the first equality follows by the naturality of ¢ and (b2) of Definition 1.3,
the second one because pi@z Ol ggd = pi@z 01 447, the third one relies on the
symmetry and the naturality of ¢, the fourth one follows by (1) and the last
one by (3). B

Therefore, there exists an unique morphism h4 : A e A — H such that

(15) (ma® H)oha=77010,,7
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The morphism h4 is a right comodule morphism because by the cocommuta-
tivity of H, (1) and the comodule properties of A, we have

Na®@ ((ha®H)opuez)

(vzoigem) ® H) 0o paez

(naocan)®@((Ag @ Am)odm))o(A®pa)oiyg
(

(

(maocan)®((Ag @ Am)ocamodn))o(ARpa)oisgg
(Haocaa) @ (0gorm))o(A®pa)oigg

= (A®dn)ovz 00,7

=na® (g oha)

and using that n4 ® H® H is an equalizer morphism we obtain (h® H)op 4,4 =
(SHOhA.
On the other hand, for f7: H -+ A ® A we have the following
= (A @Ay @ H)o(caa®@HRH)o (A®pa®@ H)o (AR cH,a)
0(pA®A)OCA,A0fA

= (pa®@Ag@H)o(A®cya®@H)o (pa®pa)o fa

= (ua® (Mg @ H) oy oym)) 0 (A® cma ® H) o (pa ® pa) o fa

=(A®@ g opun)®H)o(pa® ((Ag ® H)ody))oyao fa

= 77A®(((>\HO/\H)®H)O5H)

=1nA®dm,

where the first equality follows because f; = ca,a o fa, the second one by
the symmetry and the naturality of c¢. In the third one we used that H is a
Galois H-object and the fourth and the sixth ones are a consequence of (b1) of
Definition 1.3. Finally, in the fifth one we applied that A is a Galois H-object,
and the last one relies on the cocommutativity of H. Also

(va®H) Opi®zofi

= ((naocaa) ® (A @ Au)odm))o(A®pa)ocaao fa

= (a @ (A ® Ax)odn)) o (A®cua)o(pa®A)o fa

= (na® ((er @ (Au @A) 0 d0m)) o cam © ((pr o (ke @ Am)
o(H®oy))®@H)))o(A®cy,a®dg)o(pa®pa)o fa

= (A® ((Ax ® Ang)odn)) o (A®pum)o ((paona) ® Am)

=n4®0m,

where the first equality follows by (bl) of Definition 1.3 and the comodule

properties of A, the second one by the naturality of ¢, the third one by (a2-2)
of Definition 1.1 and the counit properties, the fourth one by (b2) of Definition
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1.3 and in the last one we used that A is a Galois H-object, (b1) of Definition
1.3 and the cocommutativity of H.
Then, p,14®2 ofx= pi@Z o f4 and, as a consequence, there exists a unique

morphism h/y : H — A e A such that
(16) igez © s = f7-
Therefore, by (15) and (16) we have
igeq0haoha=fzoha=17" 0o(Ma®H)oha =17 07500405 =404
and
(na@H)ohaohly = yz0i 500 =vz0 fx =v5075 0 (1a®@H) = (na@ H).

Then, h/y o hy =id,,5 and ha o h/y = idg and h is an isomorphism.

Finally, assume that A is strong. By (16) and the equality f; = ca,a0 fa
we obtain that iy is a morphism of unital magmas. Then hy4 is a morphism
of unital magmas and the proof is finished. O

Remark 2.9. Note that, in the Hopf algebra setting, for any Galois H-object
A, the morphism h4 obtained in the previous proposition is a morphism of
monoids because this property can be deduced from the associativity of the
product defined in A. In the Hopf quasigroup world this proof does not work
because A is a magma.

Theorem 2.10. Let H be a cocommutative faithfully flat Hopf quasigroup.
The set of isomorphism classes of Galois H-objects is a commutative monoid.
Moreover, the set of isomorphism classes of strong Galois H-objects is a com-
mutative group.

Proof. Let Galc(H) be the set of isomorphism classes of Galois H-objects. For
a Galois H-object A we denote its class in Galc(H) by [A]. By by Propositions
2.6 and 1.8, the product

(17) [A] - [B] = [A o B]

is well-defined. By Propositions 1.10, 1.9 and 1.11 we obtain that Galc(H) is
a commutative monoid with unit [H].

If we denote by Gal}(H) the set of isomorphism classes of strong Galois
H-objects, with the product defined in (17) for Galois H-objects, Galg(H) is
a commutative group because by (ii) of Proposition 2.6 the product of strong
Galois H-objects is a strong Galois H-object, by Example 2.2 we know that H
is a strong Galois H-object and by Propositions 2.7 and 2.8, the inverse of [A]
in Galg(H) is [A]. O

Definition 2.11. Let H be a cocommutative faithfully flat Hopf quasigroup.
If A is a (strong) Galois H-object, we will say that A has a normal basis if
(A, pa) is isomorphic to (H,dy) as right H-comodules. We denote by n4 the
H-comodule isomorphism between A and H.
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Obviously, N¢(H), the set of isomorphism classes of Galois H-objects with
normal basis, is a submonoid of Gal¢(H) because H = (H,dp) is a Galois H-
object with normal basis and if A, B are Galois H-objects with normal basis and
associated isomorphisms n 4, np respectively, then A e B is a Galois H-object
with normal basis and associated H-comodule isomorphism n4ep = rgoneng
where n 4enp is defined as in Proposition 1.8 and 77 is the isomorphism defined
in Proposition 1.11. Moreover, for a strong Galois H-object with normal basis
A, with associated isomorphism 7.4, we have that A = (4, p7) is also a strong
Galois H-object with normal basis, where ny = Ay o n4, and then, if we
denote by N3(H) the set of isomorphism classes of strong Galois H-objects
with normal basis, N3(H) is a subgroup of Gal}(H).

Note that, if H is a Hopf algebra we have that Gal}(H) = Galc(H) and
N¢(H) = N¢(H). Therefore, in the associative setting we recover the classical
group of Galois H-objects.

Remark 2.12. In this remark we use some classical results of algebraic K-theory
(see [3] for the details). Let G(C, H) and G*(C, H) be the categories of Galois
H-objects and strong Galois H-objects, respectively. Then, by Proposition
1.13 these categories are symmetric monoidal and then they are categories with
product. The Grothendieck group of G(C, H) is the abelian group generated by
the isomorphisms classes of objects A of G(C, H) module the relations [AeB] =
[A]-[B]. This group will be denoted by KoG(C, H) and, by the general theory of
Grothendieck groups, we know that for A, Bin G(C, H), [A] = [B] in KcG(C, H)
if and only if there exists a D in G(C, H) such that A e D is isomorphic in
G(C,H) to BeD. The unit of K¢G(C,H) is [H]. In a similar way we can
define KoG*(C, H), but in this case K¢G*(C, H) = Gal§(H) because the set of
isomorphism classes of objects of G*(C, H) is a group.

The inclusion functor i : G*(C, H) — G(C, H) is a product preserving functor
and then we have a group morphism Koyi : Gali(H) — KoG(C,H). If [A] €
Ker(Kot) we have that [A] = [H] in KoG(C, H). Then there exists D in G(C, H)
such that AeDD =~ HeD =D in G(C, H). As a consequence AeDeD = DeD in
G(C,H). Then, By Proposition 2.8, A = H as right H-comodules. Therefore
A is a strong Galois H-object with normal basis and Ker(Kyi) is a subgroup
of N3(H).

The full subcategory H = {H} of G*(C, H) is cofinal because, for all A in
G*(C,H), A e A= H as right H-comodule magmas. Therefore, the Whitehead
group of G*(C, H) is isomorphic to the Whitehead group of H. Therefore,

Ki1G°(C,H) = Auth(QH) (H).

The group Autgsc,m)(H) admits a good explanation in terms of grouplike
elements of a suitable Hopf quasigroup if H is finite, that is, if there exists an
object H* in C and an adjunction H ® — 4 H* ® —. For this adjunction we
will denote with ap :ide - H* ® H® — and by : H ® H* ® — — id¢ the unit
and the counit respectively. The object H* will be called the dual of H.
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A Hopf coquasigroup D in C is a monoid (D, 7p, up) and a counital comagma
(D,ep,dp) such that the following axioms hold:

(d1) ep and 0p are morphisms of monoids.
(d2) There exists Ap : D — D in C (called the antipode of D) such that:
(d2—1) ([LD@D)O(AD@(SD)O(SD
=np®D
= (ko ® D)o (D& ((Ap ® D)o dp)) 0 dp.
(d2—2) (D®,UD)O(5D®/\D)O5D
=D®np
=(D®up)o((D®Ap)odp)®D)odp.
As in the case of quasigroups, the antipode is unique, antimultiplicative,
anticomultiplicative, leaves the unit and the counit invariable and satisfies (3).
If D is a Hopf coquasigroup we define G(D) as the set of morphisms h :
K — D such that poh = h®h and epoh = idg. If D is commutative, G(D)
with the convolution h * g = up o (b ® g) is a commutative group, called the
group of grouplike morphisms of D. Note that the unit element of G(D) is np
and the inverse of h € G(D) is h™ = Ap o h.

It is easy to show that, if H is a finite cocommutative Hopf quasigroup, its
dual H* is a commutative finite Hopf coquasigroup where:

N = (H* ®eq)oan,

e = (H* @ by) o (H* @ HQ by @ HY) o (H* ® 6y @ H* @ H)
o(ag @ H* @ H")),

egr =bgo(ng @ HY),

Sp- = (H* © H' @ (byr o (g @ H'))) o (H* @ ayr @ H @ H') o (ayy  H"))

and the antipode is (H* @ bg)o (H* @ Ag @ H*) o (ag ® H*).

The groups G(H*) and Autgs(c, gy (H) are isomorphic. The proof is equal
to the one given in Proposition 3.7 of [14]. If a € Autgs(c, m)(H), the mor-
phism z, = (H* ® (eg o a)) oay is in G(H"). Then, we define the map
Autgsc,my(H) — G(H*) by z(a) = 2. On the other hand, if h € G(H*),
then z, = (H ® by) o (g @ h) : H — H is a morphism of Galois H-objects
and then, by Remark 1.4, it is an isomorphism, that is 2, € Autgsc,m) (H).
The map z : G(H*) — Autgs (¢, gy (H) defined by x(h) = xj, is the inverse of z.
Therefore,

K,G*°(C,H) = GH").
Finally, N*(C, H) is the subcategory of G*(C, H) whose objects are the strong

Galois H-objects with normal basis, note that H = {H} it is also cofinal in
N*(C, H) and then

KiN*(C, H) = G(H").
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3. Invertible comodules with geometric normal basis

This section is devoted to study the connections between Galois H-objects
and invertible comodules with geometric normal basis. First of all, we intro-
duce the notion of invertible comodule with geometric normal basis which is a
generalization to the non associative setting of the one defined by Caenepeel
in [6].

Definition 3.1. Let H be a cocommutative faithfully flat Hopf quasigroup.
A right H-comodule M = (M, pys) is called invertible with geometric normal
basis if there exist a faithfully flat unital magma S and an isomorphism h; :
S® M — S® H of right H-comodules such that hj,; is almost lineal, that is

(18) hyv = (ps @ H) o (S @ (har o (ns @ M))).

A morphism between two invertible right H-comodules with normal basis is a
morphism of right H-comodules.

Note that, if S is a monoid, hjs is a morphism of left S-modules, for pggir =
us@M and psgu = ps®H, if and only if (18) holds. Then in the Hopf algebra
setting this definition is the one introduced by Caenepeel in [6].

Example 3.2. Let H be a cocommutative faithfully flat Hopf quasigroup and
let A = (A, pa) be a Galois H-object. Then A = (A, p4) is an invertible right
H-comodule with geometric normal basis because h4 = 4 is an isomorphism of
right H-comodules and trivially v4 is almost lineal. In particular, H = (H,dp)
is an example of invertible right H-comodule with geometric normal basis.

Proposition 3.3. Let H be a cocommutative faithfully flat Hopf quasigroup
and M, N be invertible right H-comodules with geometric normal basis. Then
the right H-comodule M ¢ N = (M o N,prren), where M o N and ppren are
defined as in Proposition 1.7, is a right H-comodule with geometric normal
basis.

Proof. Let S, R and hjps, hy be the faithfully flat unital magmas and the
isomorphisms of right H-comodules associated to M and N respectively. Then
T =S ® R is faithfully flat. On the other hand,

1
T®Rprrgn

TRineN

T®MeN

TOM®N TOM®N®H

-5
T®P?\/1®N

and

T®p}—1®ﬂ

- >

TR
T®H

T®OH®H TOH®H®H

-
T®P?1®H

are equalizer diagrams and for the morphism

gmeN = (S®cr,u®H)o(hy@hn)o(S®cru®@ON): SOQROM@N — SO ROH®H
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we have that
(S®R® phon) © gmen © (S ® R inen)
=(SQcurQcuu)o(SRHQcur®H)o ((S®d0u)ohm)hy)
0(S®crM @N)o(S®RQimen)
=(SQcurQcuu)o(SRHQcur@H)o ((hapr @ H)o (S® par)) @ hy)
0(S®crm @N)o(S®RRiren)
=(((S®cur®@H)o(hy @hn))@H)o(S®crm @ N® H)
0o (SQR®((M®@cun)o(pm @ N)oipen))
=((S@cur®H)o (hy @hy)) @ H) o (S®cur® (M ®pN)oinen))
= (S®R® pirou) © guen © (S ® R @ inen),

where the first and the third equalities follow by the naturality of ¢, the sec-
ond and the fifth ones by the comodule morphism condition for hjs and hy
respectively and finally the fourth one by the properties of ijen.

Therefore, there exists a unique morphism hjen : TR M o N — T ® H such
that

(19) (T ®0u) o hrven = gman © (T @inen).
Moreover, if we define the morphism
Irien=(S®crr, RON )o(hy @hy")o(S®ck p®@H): SOROHRH— SR ROM RN

by the naturality of ¢, the comodule morphism condition for hl\j[l and h;vl and
the cocommutativity of H, the following equalities hold

(S®R® prrgn) © duen © (S® R® 6n)

= (S@cur®cun)o(SOM@cur®@N)o (((S®pur)ohy)®hy')
o(S®cyr®@H)o(S®R® )

= (S@emr®crn)o(S®M@cyr®N)o (((hy ® H) o (S®dm)) @ hy')
o(S®cur®@H)o(S®R® )

= (Ghron ® H) o (S ® R® (H ® 55) o 0rr))

= (S®R®p?\/1®N)og§w®No(S®R®5H).

As a consequence, there exists a unique morphism by, : TOH - T@Me N
such that

(20) (T ®imen) 0 haran = Irron © (T @ 0mr).
Thus, by (19) and (20)
haten © hyrany = (T ® (e ® H) 0 0p)) 0 haren © Wygen
T®ey ®H)oguen o (T ®iven) o Myen

= (
=(T®en ®H)oguen ©gugy © (T ®dn) =idren
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and
(T ®inren) © Pyren © haten = ghyen © (T ® 0ir) © haren
= ggVI@N O gM®@N © (T®'LM.N) = T®’LM.N

and then hjzen is an isomorphism with inverse hy}, v = hyson-
The morphism hjpsen is a morphism of right H-comodules because

(haren @ H) o (T ® prren)
=TR(H®en)odny)@H) o (hpen @ H) o (T ® prren)
=ToHReg @H)o(gruen @ H) o (T ® ((irmren @ H) 0 prren))
=TeoH®eg®@H)o(guegn @ H) o (T ® (M ® pN) 0 irren))
=(T®H®(H®en)odn))oguen o (T @imen)

= (T ®0m) o hnren,

where the first equality follows by the counit property, the second and the last
ones by (19), the third one the properties of ppren and the fourth one by the
comodule condition for h .

Finally, we will prove that hjsen is almost lineal. Indeed:

(nr @ H) o (T ® (haen © (nT ® M @ N)))
= (pur® (g @ H)odn)) o (T @ (haven o (nr @ M @ N)))
= (user @eg @ H) o (S® R® (guen © (s @ Nr @ iren)))
=(S®en @R H)o (((ns ® H) o (5@ (har o (ns ® M)))) ® ((hr ® H)
o(R®(hno(mr®N))))o(S®crRm @N)o(S®RQirmen)
=(T®eg ®H)ogugn o (T @iren)
= (I'® ((eng ® H) 0 6n)) © haren
= haren.
In the last equalities, the first and the sixth ones follow by the properties of the
counit, the second and the fifth ones by (19), the third one is a consequence of

the naturality of ¢ and the fourth one relies on the almost lineal condition for
hM and hN. O

As a direct consequence of this proposition we have the following theorem.

Theorem 3.4. Let H be a cocommutative faithfully flat Hopf quasigroup. If
we denote by Pynp(K, H) the category whose objects are the invertible right
H -comodules with geometric normal basis and whose morphisms are the mor-
phisms of right H -comodules between them, Py, (K, H) with the product defined
in the previous proposition is a symmetric monoidal category where the unit
object is H and the symmetry isomorphisms, the left, right an associative con-
straints are defined as in Proposition 1.18. Moreover, the set of isomorphism
classes in Py (K, H) is a monoid that we will denote by Picg,,(K, H).
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Remark 3.5. There is a monoid morphism w : Galec(H) — Pynp (K, H) defined
by w([A]) = [A]. If w([A]) = [H] we have that A & H as right H-comodules.
Then [A] € Ne¢(H). Also, if [A] € Galg(H) and w([A]) = [H], [A] € N3(H).
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