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THE GROUP OF STRONG GALOIS OBJECTS ASSOCIATED

TO A COCOMMUTATIVE HOPF QUASIGROUP

Jose N. Alonso Álvarez, Ramon González Rodŕıguez,

and Jose M. Fernández Vilaboa

Abstract. Let H be a cocommutative faithfully flat Hopf quasigroup in
a strict symmetric monoidal category with equalizers. In this paper we
introduce the notion of (strong) Galois H-object and we prove that the set
of isomorphism classes of (strong) Galois H-objects is a (group) monoid
which coincides, in the Hopf algebra setting, with the Galois group of
H-Galois objects introduced by Chase and Sweedler.

Introduction

Let R be a commutative ring with unit. The notion of Galois H-object for
a commutative, cocommutative Hopf R-algebra H , which is a finitely gener-
ated projective R-module, is due to Chase and Sweedler [7]. As was pointed
by Beattie [4], although the discussion of Galois H-objects in [7] is limited
to commutative algebras, the main properties can be easily extended to non
commutative algebras. One of more relevant is the following: if H is cocom-
mutative, the isomorphism classes of Galois H-objects form a group denoted
by Gal(R,H). The product in Gal(R,H) is defined by the kernel of a suitable
morphism and the class of H is the identity element. This construction can
be extended to symmetric closed categories with equalizers and coequalizers
working with monoids instead of algebras and some of the more important
properties and exact sequences involving the group Gal(R,H) were obtained
in this categorical setting ([9], [13], [14]).

An interesting generalization of Hopf algebras are Hopf quasigroups intro-
duced by Klim and Majid in [8] in order to understand the structure and
relevant properties of the algebraic 7-sphere. They are not associative but the
lack of this property is compensated by some axioms involving the antipode.
The concept of Hopf quasigroup is a particular instance of the notion of unital
coassociative H-bialgebra introduced in [11] and includes the example of an
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enveloping algebra U(L) of a Malcev algebra (see [8]) as well as the notion of
quasigroup algebra RL of an I.P. loop L. Then, quasigroups unify I.P. loops
and Malcev algebras in the same way that Hopf algebras unified groups and
Lie algebras.

In this paper we are interested to answer the following question: is it pos-
sible to extend the construction of Gal(R,H) to the situation where H is a
cocommutative Hopf quasigroup? in other words, can we construct in a non-
associative setting a group of Galois H-objects? The main obstacle to define
the group is the lack of associativity because we must work with unital mag-
mas, i.e., objects where there exists a non-associative product with unit. As
we can see in the first section of this paper, Hopf quasi groups are examples of
these algebraic structures.

The paper is organized as follows. We begin introducing the notion of right
H-comodule magma, where H is a Hopf quasigroup, and defining the product
of right H-comodule magmas. In the second section we introduce the notions
of Galois H-object and strong Galois H-objects proving that, with the product
defined in the first section for comodule magmas, the set of isomorphism classes
forms a monoid, in the case of GaloisH-objects, and a group when we work with
strong Galois H-objects. In this point it appears the main difference between
our Galois H-objects and the ones associated to a Hopf algebra because in
the Hopf algebra setting the inverse of the class of a Galois H-object A is
the class of the opposite Galois H-object Aop, while in the quasigroup context
this property fails. We only have the following: the product of A and Aop is
isomorphic to H only as comodules. To obtain an isomorphism of magmas we
need to work with strong GaloisH-objects. Then, the strong condition appears
in a natural way and we want to point out that in the classical case of Galois
H-objects associated to a Hopf algebraH all of them are strong. Finally, in the
last section, we study the connections between Galois H-objects and invertible
comodules with geometric normal basis.

Throughout this paper C denotes a strict symmetric monoidal category with
equalizers where ⊗ denotes the tensor product, K the unit object and c the
symmetry isomorphism. We denote the class of objects of C by |C| and for each
object M ∈ |C|, the identity morphism by idM : M → M . For simplicity of
notation, given objects M , N and P in C and a morphism f : M → N , we
write P ⊗ f for idP ⊗ f and f ⊗ P for f ⊗ idP . We will say that A ∈ |C| is flat
if the functor A ⊗ − : C → C preserves equalizers. If moreover A ⊗ − reflects
isomorphisms we say that A is faithfully flat.

By a unital magma in C we understand a triple A = (A, ηA, µA) where A

is an object in C and ηA : K → A (unit), µA : A ⊗ A → A (product) are
morphisms in C such that µA ◦ (A ⊗ ηA) = idA = µA ◦ (ηA ⊗ A). If µA is
associative, that is, µA ◦ (A ⊗ µA) = µA ◦ (µA ⊗ A), the unital magma will
be called a monoid in C. For any unital magma A with A we will denote the
opposite unital magma (A, ηA = ηA, µA = µA◦cA,A). Given two unital magmas
(monoids) A = (A, ηA, µA) and B = (B, ηB, µB), f : A → B is a morphism of
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unital magmas (monoids) if µB ◦ (f ⊗ f) = f ◦µA and f ◦ ηA = ηB . By duality,
a counital comagma in C is a triple D = (D, εD, δD) where D is an object in C
and εD : D → K (counit), δD : D → D ⊗D (coproduct) are morphisms in C
such that (εD ⊗D) ◦ δD = idD = (D⊗ εD) ◦ δD. If δD is coassociative, that is,
(δD⊗D)◦δD = (D⊗δD)◦δD, the counital comagma will be called a comonoid.
If D = (D, εD, δD) and E = (E, εE , δE) are counital comagmas (comonoids),
f : D → E is morphism of counital magmas (comonoids) if (f⊗f)◦δD = δE ◦f
and εE ◦ f = εD.

Finally note that if A, B are unital magmas (monoids) in C, the object A⊗B

is a unital magma (monoid) in C where ηA⊗B = ηA⊗ηB and µA⊗B = (µA⊗µB)◦
(A⊗cB,A⊗B). With Ae we will denote the unital magma A⊗A. In a dual way,
if D, E are counital comagmas (comonoids) in C, D⊗E is a counital comagma
(comonoid) in C where εD⊗E = εD⊗εE and δD⊗E = (D⊗cD,E⊗E)◦(δD⊗δE).

1. Comodule magmas for Hopf quasigroups

This first section is devoted to the study of the notion ofH-comodule magma
associated to a Hopf quasigroup H . We will show that, as in the Hopf algebra
setting, it is possible to define a product using suitable equalizers which induces
a monoidal structure in the category of flat H-comodule magmas.

The notion of Hopf quasigroup was introduced in [8] and the following is its
monoidal version.

Definition 1.1. A Hopf quasigroupH in C is a unital magma (H, ηH , µH) and
a comonoid (H, εH , δH) such that the following axioms hold:

(a1) εH and δH are morphisms of unital magmas.
(a2) There exists λH : H → H in C (called the antipode of H) such that:

(a2-1) µH ◦ (λH ⊗ µH) ◦ (δH ⊗H)

= εH ⊗H

= µH ◦ (H ⊗ µH) ◦ (H ⊗ λH ⊗H) ◦ (δH ⊗H).

(a2-2) µH ◦ (µH ⊗H) ◦ (H ⊗ λH ⊗H) ◦ (H ⊗ δH)

= H ⊗ εH

= µH ◦ (µH ⊗ λH) ◦ (H ⊗ δH).

If H is a Hopf quasigroup, the antipode is unique, antimultiplicative, anti-
comultiplicative and leaves the unit and the counit invariable:

(1) λH ◦ µH = µH ◦ (λH ⊗ λH) ◦ cH,H , δH ◦ λH = cH,H ◦ (λH ⊗ λH) ◦ δH ,

(2) λH ◦ ηH = ηH , εH ◦ λH = εH

([8], Proposition 4.2 and [10], Proposition 1). Note that by (a2),

(3) µH ◦ (λH ⊗ idH) ◦ δH = µH ◦ (idH ⊗ λH) ◦ δH = εH ⊗ ηH .
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A Hopf quasigroup H is cocommutative if cH,H ◦ δH = δH . In this case, as
in the Hopf algebra setting, we have that λH ◦ λH = idH (see Proposition 4.3
of [8]).

Let H and B be Hopf quasigroups. We say that f : H → B is a morphism
of Hopf quasigroups if it is a morphism of unital magmas and comonoids. In
this case λB ◦ f = f ◦ λH (see Proposition 1.5 of [1]).

Examples 1.2. The notion of Hopf quasigroup was introduced in [8] and it can
be interpreted as the linearization of the concept of quasigroup. A quasigroup
is a set Q together with a product such that for any two elements u, v ∈ Q the
equations ux = v, xu = v and uv = x have unique solutions in Q. A quasigroup
L which contains an element eL such that ueL = u = eLu for every u ∈ L is
called a loop. A loop L is said to be a loop with the inverse property (for
brevity an I.P. loop) if and only if, to every element u ∈ L, there corresponds
an element u−1 ∈ L such that the equations u−1(uv) = v = (vu)u−1 hold for
every v ∈ L.

If L is an I.P. loop, it is easy to show (see [5]) that for all u ∈ L the element
u−1 is unique and u−1u = eL = uu−1. Moreover, for all u, v ∈ L, the equality
(uv)−1 = v−1u−1 holds.

Let R be a commutative ring and L and I.P. loop. Then, by Proposition 4.7
of [8], we know that

RL =
⊕

u∈L

Ru

is a cocommutative Hopf quasigroup with product given by the linear extension
of the one defined in L and

δRL(u) = u⊗ u, εRL(u) = 1R, λRL(u) = u−1

on the basis elements.
Now we briefly describe another example of Hopf quasigroup constructed

working with Malcev algebras (see [12] for details). Consider a commutative
and associative ring K with 1

2 and 1
3 in K. A Malcev algebra (M, [ , ]) over

K is a free module in K-Mod with a bilinear anticommutative operation [ , ]
on M satisfying that [J(a, b, c), a] = J(a, b, [a, c]), where J(a, b, c) = [[a, b], c]−
[[a, c], b]−[a, [b, c]] is the Jacobian in a, b, c. Denote by U(M) the not necessarily
associative algebra defined as the quotient of K{M}, the free non-associative
algebra on a basis of M , by the ideal I(M) generated by the set {ab − ba −
[a, b], (a, x, y) + (x, a, y), (x, a, y) + (x, y, a) : a, b ∈ M,x, y ∈ K{M}}, where
(x, y, z) = (xy)z − x(yz) is the usual additive associator.

By Proposition 4.1 of [12] and Proposition 4.8 of [8], the diagonal map
δU(M) : U(M) → U(M) ⊗ U(M) defined by δU(M)(x) = 1 ⊗ x + x ⊗ 1 for
all x ∈ M, and the map εU(M) : U(M) → K defined by εU(M)(x) = 0 for
all x ∈ M , both extended to U(M) as morphisms of unital magmas; together
with the map λU(M) : U(M) → U(M), defined by λU(M)(x) = −x for all
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x ∈ M and extended to U(M) as an antimultiplicative morphism, provide a
cocommutative Hopf quasigroup structure on U(M).

Definition 1.3. Let H be a Hopf quasigroup and let A be a unital magma
(monoid) with a right coaction ρA : A → A⊗H . We will say that A = (A, ρA)
is a right H-comodule magma (monoid) if (A, ρA) is a right H-comodule (i.e.,
(ρA⊗H)◦ρA = (A⊗δH)◦ρA, (A⊗εH)◦ρA = idA), and the following identities

(b1) ρA ◦ ηA = ηA ⊗ ηH ,

(b2) ρA ◦ µA = µA⊗H ◦ (ρA ⊗ ρA),

hold.
Obviously, if H is a Hopf quasigroup, the pair H = (H, δH) is an example of

right H-comodule magma.
Let A, B be right H-comodule magmas (monoids). A morphism of right

H-comodule magmas (monoids) f : A → B is a morphism f : A → B in C of
unital magmas (monoids) and right H-comodules, that is (f⊗H)◦ρA = ρB ◦f .

Remark 1.4. Note that, ifH is cocommutative, every endomorphism α : H → H

of right H-comodule magmas is an isomorphism. Indeed: First note that by
the comodule condition and the cocommutativity of H we have α = ((εH ◦α)⊗
H) ◦ δH = (H ⊗ (εH ◦ α)) ◦ δH and then α′ = (H ⊗ (εH ◦ α ◦ λH)) ◦ δH is the
inverse of α because by the properties of H :

α′ ◦ α = α ◦ α′ = (H ⊗ (((εH ◦ α) ⊗ (εH ◦ α ◦ λH)) ◦ δH)) ◦ δH

= (H ⊗ (εH ◦ α ◦ µH ◦ (H ⊗ λH) ◦ δH)) ◦ δH

= idH .

Proposition 1.5. Let H be a Hopf quasigroup and A, B right H-comodule

magmas. The pairs A⊗1B = (A⊗B, ρ1A⊗B = (A⊗cH,B)◦ (ρA⊗B)), A⊗2B =

(A⊗B, ρ2A⊗B = A⊗ ρB) are right H-comodule magmas. Moreover A⊗1 B and

B⊗2 A are isomorphic right H-comodule magmas.

Proof. We give the proof only for A⊗1B. The calculus for A⊗2B are analogous
and we left to the reader. First note that the object A⊗B is a unital magma in
C. On the other hand, the pair (A ⊗ B, ρ1A⊗B) is a right H-comodule because

trivially (A⊗B⊗ εH) ◦ ρ1A⊗B = idA⊗B and using the naturality of c we obtain

that (ρ1A⊗B⊗H)◦ρ1A⊗B = (A⊗δH)◦ρ1A⊗B. Moreover, ρ1A⊗B◦ηA⊗B = ηA⊗B⊗ηH
and also by the naturality of c we have ρ1A⊗B ◦ µA⊗B = (µA⊗B ⊗ µH) ◦ (A ⊗

B ⊗ cH,A⊗B ⊗ H) ◦ (ρ1A⊗B ⊗ ρ1A⊗B). Finally, cA,B is an isomorphism of right
H-comodule magmas between A⊗1 B and B⊗2 A because by the naturally of
c we obtain that cA,B ◦ ηA⊗B = ηB⊗A, µB⊗A ◦ (cA,B ⊗ cA,B) = cA,B ◦ µA⊗B

and ρ2B⊗A ◦ cA,B = (cA,B ⊗H) ◦ ρ1A⊗B. �

Proposition 1.6. Let H be a cocommutative Hopf quasigroup and A a right

H-comodule magma. Then A = (A, ρA = (A⊗λH)◦ρA) is a right H-comodule

magma.
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Proof. Trivially (A⊗ εH) ◦ ρA = idA. Using that H is cocommutative and (1)
we obtain (ρA ⊗H) ◦ ρA = (A ⊗ δH) ◦ ρA. Moreover by (b1) of Definition 1.3
and (2), the identity ρA ◦ ηA = ηA ⊗ ηH holds. Finally, by the naturality of c,
(b2) of Definition 1.3 and (1) the equality ρA ◦ µA = µA⊗H ◦ (ρA ⊗ ρA) follows
easily. �

Proposition 1.7. Let H be a Hopf quasigroup and A, B right H-comodule

magmas. The object A •B defined by the equalizer diagram

✲

✲

✲A •B A⊗B A⊗B ⊗H,
iA•B

ρ1A⊗B

ρ2A⊗B

where ρ1A⊗B and ρ2A⊗B are the morphisms defined in Proposition 1.5, is a

unital magma where ηA•B and µA•B are the factorizations through iA•B of the

morphisms ηA⊗B and µA⊗B ◦ (iA•B ⊗ iA•B) respectively. Moreover, if H is flat

and the coaction ρA•B : A •B → A •B⊗H is the factorization of ρ2A⊗B ◦ iA•B

through iA•B⊗H, the pair A•B = (A•B, ρA•B) is a right H-comodule magma.

Proof. Trivially ρ1A⊗B ◦ηA⊗B = ηA⊗ηB⊗ηH = ρ2A⊗B ◦ηA⊗B. Therefore, there
exists a unique morphism ηA•B : K → A • B such that iA•B ◦ ηA•B = ηA⊗B .
On the other hand, using the properties of ρA and ρB and the naturality of c
we have

ρ1A⊗B ◦ µA⊗B ◦ (iA•B ⊗ iA•B)

= (µA⊗B ⊗ µH) ◦ (A⊗B ⊗ cH,A⊗B ⊗H) ◦ ((ρ1A⊗B ◦ iA•B)⊗ (ρ1A⊗B ◦ iA•B))

= (µA⊗B ⊗ µH) ◦ (A⊗B ⊗ cH,A⊗B ⊗H) ◦ ((ρ2A⊗B ◦ iA•B)⊗ (ρ2A⊗B ◦ iA•B))

= ρ2A⊗B ◦ µA⊗B ◦ (iA•B ⊗ iA•B).

Then, there exists a unique morphism µA•B : A • B ⊗ A • B → A • B such
that iA•B ◦ µA•B = µA⊗B ◦ (iA•B ⊗ iA•B). Moreover, µA•B ◦ (ηA•B ⊗A •B) =
idA•B = µA•B ◦ (A•B⊗ ηA•B) because iA•B ◦µA•B ◦ (ηA•B ⊗A•B) = iA•B =
iA•B ◦ µA•B ◦ (A •B ⊗ ηA•B). Therefore, A •B is a unital magma.

Moreover,

✲

✲

✲A •B ⊗H A⊗B ⊗H A⊗B ⊗H ⊗H
iA•B⊗H

ρ1

A⊗B⊗H

ρ2

A⊗B⊗H

is an equalizer diagram, because −⊗H preserves equalizers, and by the proper-
ties of ρA and ρB and the naturally of c we obtain (ρ1A⊗B ⊗H)◦ρ2A⊗B ◦ iA•B =

(ρ2A⊗B ⊗H) ◦ ρ2A⊗B ◦ iA•B. As a consequence, there exists a unique morphism

ρA•B : A •B → A •B ⊗H such that (iA•B ⊗H) ◦ ρA•B = ρ2A⊗B ◦ iA•B. Then,
the pair (A•B, ρA•B) is a right H-comodule because (iA•B⊗εH)◦ρA•B = iA•B

and also (((iA•B ⊗H) ◦ ρA•B)⊗H) ◦ ρA•B = (iA•B ⊗ δH) ◦ ρA•B. Finally, (b1)
and (b2) of Definition 1.3 follow, by a similar reasoning, from (iA•B ⊗ H) ◦
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ρA•B ◦ ηA•B = (iA•B ⊗ H) ◦ (ηA•B ⊗ ηH) and (iA•B ⊗ H) ◦ ρA•B ◦ µA•B =
(iA•B ⊗H) ◦ µA•B⊗H ◦ (ρA•B ⊗ ρA•B). �

Proposition 1.8. Let H be a flat Hopf quasigroup and f : A → B, g : T → D

morphisms of right H-comodule magmas. Then the morphism f • g : A • T →
B •D, obtained as the factorization of (f ⊗ g) ◦ iA•T : A • T → B ⊗D through

the equalizer iB•D, is a morphism of right H-comodule magmas between A • T
and B • D. Moreover, if f and g are isomorphisms, so is f • g.

Proof. Using that f and g are comodule morphisms we obtain ρ1B⊗D ◦ (f ⊗ g)◦

iA•T = ρ2B⊗D◦(f⊗g)◦iA•T and as a consequence there exist a unique morphism
(f•g) : A•T → B•D such that iB•D◦(f•g) = (f⊗g)◦iA•T . The morphism f•g
is a morphism of unital magmas because iB•D ◦ηB•D = iB•D ◦(f •g)◦ηA•T and
for the product the equality iB•D◦µB•D◦((f •g)⊗(f•g)) = iB•D◦(f •g)◦µA•T

holds. Also, it is a comodule morphism because (iB•D ⊗H) ◦ ρB•D ◦ (f • g) =
(iB•D ⊗H) ◦ ((f • g)⊗H) ◦ ρA•T .

Finally, it is easy to show that, if f and g are isomorphisms, f • g is an
isomorphism with inverse f−1 • g−1. �

Proposition 1.9. Let H be a flat Hopf quasigroup and A, B right H-comodule

magmas. Then A • B and B • A are isomorphic as right H-comodule magmas.

Proof. First note that by the naturally of c and the properties of the equaliser
morphism iA•B we have that ρ1B⊗A ◦ cA,B ◦ iA•B = ρ2B⊗A ◦ cA,B ◦ iA•B and
then there exists a morphism τA,B : A • B → B • A such that iB•A ◦ τA,B =
cA,B◦iA•B. Also there exists an unique morphism τB,A : B•A → A•B such that
iA•B◦τB,A = cB,A◦iB•A. Then iA•B◦τB,A◦τA,B = cB,A◦cA,B◦iA•B = iA•B and
similarly iB•A ◦ τA,B ◦ τB,A = iB•A. Thus τA,B is an isomorphism with inverse
τB,A. Moreover, iB•A ◦ τA,B ◦ηA•B = cA,B ◦ iA•B ◦ηA•B = ηB⊗A = iB•A ◦ηB•A

and

iB•A ◦ τA,B ◦ µA•B = µB⊗A ◦ ((cA,B ◦ iA•B)⊗ (cA,B ◦ iA•B))

= µB⊗A ◦ ((iB•A ◦ τA,B)⊗ (iB•A ◦ τA,B))

= iB•A ◦ µB•A ◦ (τA,B ⊗ τA,B).

Therefore, τA,B is a morphism of unital magmas and finally it is a morphism of
rightH-comodules because ((iB•A◦τA,B)⊗H)◦ρA•B = (iB•A⊗H)◦ρB•A◦τA,B.

�

Proposition 1.10. Let H be a flat Hopf quasigroup and A, B, D right H-

comodule magmas such that A and D are flat. Then A• (B•D) and (A•B)•D
are isomorphic as right H-comodule magmas.

Proof. First, note that

✲

✲

✲A⊗B •D A⊗B ⊗D A⊗B ⊗D ⊗H
A⊗iB•D

A⊗ρ1

B⊗D

A⊗ρ2

B⊗D
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and

✲

✲

✲A •B ⊗D A⊗B ⊗D A⊗ B ⊗D ⊗H
iA•B⊗D

(A⊗B⊗cH,D)◦(ρ1

A⊗B⊗D)

(A⊗B⊗cH,D)◦(ρ2

A⊗B⊗D)

are equalizer diagrams because A and D are flat and A⊗B ⊗ cH,D an isomor-
phism. On the other hand, it is easy to show that

(A⊗ iB•D ⊗H) ◦ ρ1A⊗B•D = (A⊗ B ⊗ cH,D) ◦ (ρ1A⊗B ⊗D) ◦ (A⊗ iB•D)

and

(A⊗ iB•D ⊗H) ◦ ρ2A⊗B•D = (A⊗B ⊗ cH,D) ◦ (ρ2A⊗B ⊗D) ◦ (A⊗ iB•D).

Therefore

(A⊗B ⊗ cH,D) ◦ (ρ1A⊗B ⊗D) ◦ (A⊗ iB•D) ◦ iA•(B•D)

= (A⊗B ⊗ cH,D) ◦ (ρ2A⊗B ⊗D) ◦ (A⊗ iB•D) ◦ iA•(B•D)

and as a consequence there exists a unique morphism h : A • (B • D) →
(A •B)⊗D such that

(4) (iA•B ⊗D) ◦ h = (A⊗ iB•D) ◦ iA•(B•D).

The diagram

✲

✲

✲
A • (B •D) (A •B)⊗D A •B ⊗D ⊗H

h
ρ1

A•B⊗D

ρ2

A•B⊗D

is an equalizer diagram. Indeed, it is easy to see that ρ1A•B⊗D ◦h = ρ1A•B⊗D ◦h

and, if f : C → A•B⊗D is a morphism such that ρ1(A•B)⊗D
◦f = ρ2(A•B)⊗D

◦f ,

we have that

(A⊗ ρ1B⊗D) ◦ (iA•B ⊗D) ◦ f = (A⊗ ρ2B⊗D) ◦ (iA•B ⊗D) ◦ f

because

(A⊗ ρ1B⊗D) ◦ (iA•B ⊗D) = (iA•B ⊗D ⊗H) ◦ ρ1A•B⊗D

and

(A⊗ ρ2B⊗D) ◦ (iA•B ⊗D) = (iA•B ⊗D ⊗H) ◦ ρ2A•B⊗D.

Then, there exists a unique morphism t : C → A⊗B •D such that (A⊗ iB•D)◦
t = (iA•B ⊗D) ◦ f . The morphism t factorizes through the equalizer iA•(B•D)

because

(A⊗ iB•D ⊗H) ◦ ρ1A⊗B•D ◦ t = (A⊗ iB•D ⊗H) ◦ ρ2A⊗B•D ◦ t

and then

ρ1A⊗B•D ◦ t = ρ2A⊗B•D ◦ t

holds. Thus, there exists a unique morphism g : C → A • (B • D) satisfying
the equality iA•(B•D) ◦ g = t. As a consequence

(iA•B ⊗D) ◦ h ◦ g = (A⊗ iB•D) ◦ iA•(B•D) ◦ g
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= (A⊗ iB•D) ◦ t = (iA•B ⊗D) ◦ f

and then h ◦ g = f . Moreover, g is the unique morphism such that h ◦ g = t,
because if d : C → A•(B•D) satisfies h◦d = f , we obtain that iA•(B•D)◦d = t

and therefore d = g.
As a consequence, there exists an isomorphism nA,B,C : A • (B • D) →

(A •B) •D such that

(5) i(A•B)•D ◦ nA,B,D = h.

The isomorphism nA,B,C is a morphism of unital magmas because by (4),
(5) and the naturality of c we have

(iA•B ⊗D) ◦ i(A•B)•D ◦ nA,B,D ◦ ηA•(B•D)

= (iA•B ⊗D) ◦ h ◦ ηA•(B•D)

= (A⊗ iB•D) ◦ iA•(B•D) ◦ ηA•(B•D)

= ηA ⊗ ηB ⊗ ηD

= (iA•B ⊗D) ◦ i(A•B)•D ◦ η(A•B)•D

and

(iA•B ⊗D) ◦ i(A•B)•D ◦ nA,B,D ◦ µA•(B•D)

= (iA•B ⊗D) ◦ h ◦ µA•(B•D)

= (A⊗ iB•D) ◦ iA•(B•D) ◦ µA•(B•D)

= (A⊗ iB•D) ◦ µA⊗(B•D) ◦ (iA•(B•D) ⊗ iA•(B•D))

= µA⊗B⊗D ◦ (((A⊗ iB•D) ◦ iA•(B•D))⊗ ((A ⊗ iB•D) ◦ iA•(B•D)))

= µA⊗B⊗D ◦ (((iA•B ⊗D) ◦ h)⊗ ((iA•B ⊗D) ◦ h))

= (iA•B ⊗D) ◦ µA•B⊗D ◦ (h⊗ h)

= (iA•B ⊗D) ◦ µA•B⊗D ◦ ((i(A•B)•D ◦ nA,B,C)⊗ (i(A•B)•D ◦ nA,B,C))

= (iA•B ⊗D) ◦ i(A•B)•D ◦ µ(A•B)•D ◦ (nA,B,D ⊗ nA,B,D).

Finally, using a similar reasoning, we obtain that nA,B,C is a morphism of right
H-comodules because

(iA•B ⊗D ⊗H) ◦ (i(A•B)•D ⊗H) ◦ ρ(A•B)•D ◦ nA,B,D

= (A⊗B ⊗ ρD) ◦ (iA•B ⊗D) ◦ i(A•B)•D ◦ nA,B,C

= (A⊗B ⊗ ρD) ◦ (iA•B ⊗D) ◦ h

= (A⊗B ⊗ ρD) ◦ (A⊗ iB•D) ◦ iA•(B•D)

= (A⊗ iB•D ⊗H) ◦ (A⊗ ρB•D) ◦ iA•(B•D)

= (A⊗ iB•D ⊗H) ◦ (iA•(B•D) ⊗H) ◦ ρA•(B•D)

= (iA•B ⊗D ⊗H) ◦ (h⊗H) ◦ ρA•(B•D)

= (iA•B ⊗D ⊗H) ◦ (i(A•B)•D ⊗H) ◦ (nA,B,D ⊗H) ◦ ρA•(B•D). �
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Proposition 1.11. Let H be a cocommutative Hopf quasigroup and A a right

H-comodule magma. Then

(6)

✲

✲

✲A A⊗H A⊗H ⊗H,
ρA

ρ1A⊗H

ρ2A⊗H

is an equalizer diagram. If H is flat A • H and A are isomorphic as right

H-comodule magmas.

Proof. We will begin by showing that (6) is an equalizer diagram. Indeed, if H
is cocommutative we have that ρ1A⊗H ◦ρA = (A⊗(cH,H ◦δH))◦ρA = ρ2A⊗H ◦ρA.

Moreover, if there exists a morphism f : D → A ⊗ H such that ρ1A⊗H ◦ f =

ρ2A⊗H ◦ f , we have that ρA ◦ (A⊗ εH) ◦ f = f and if g : D → A is a morphism
such that ρA ◦ g = f this gives g = (A ⊗ εH) ◦ f . Therefore there is a unique
isomorphism rA : A •H → A satisfying ρA ◦ rA = iA•H .

In the second step we show that rA is a morphism of right H-comodule
magmas. Trivially, rA ◦ ηA•H = ηA because ρA ◦ rA ◦ ηA•H = iA•H ◦ ηA•H =
ηA⊗ηH = ρA◦ηA. Also µA◦(rA⊗rA) = rA◦µA•H because ρA◦µA◦(rA⊗rA) =
ρA ◦ rA ◦ µA•H and as a consequence rA is a morphism of unital magmas.
Finally, the H-comodule condition follows from ((ρA ◦ rA) ⊗ H) ◦ ρA•H =
(ρA ⊗H) ◦ ρA ◦ rA. �

Remark 1.12. Note that, under the conditions of the previous proposition, the
coaction for A •H is iA•B. On the other hand, Proposition 1.11 gives that

✲

✲

✲H H ⊗H A⊗H ⊗H,
δH

ρ1H⊗H

ρ2H⊗H

is an equalizer diagram.

Proposition 1.13. Let H be a cocommutative Hopf quasigroup and Magf(C,
H) be the category whose objects are flat H-comodule magmas and whose arrows

are the morphism of H-comodule magmas. Then Magf(C, H) is a symmetric

monoidal category.

Proof. The category Magf(C, H) is a monoidal category with the tensor prod-
uct defined by the product “ • ” introduced in Proposition 1.7, with unit H,
with associative constraints aA,B,D = n−1

A,B,D, where nA,B,D is the isomorphism
defined in Proposition 1.10, and right unit constraints and left unit constraints
rA = rA, lA = rA ◦ τH,A respectively, where rA is the isomorphism defined in
Proposition 1.11 and τH,A the one defined in Proposition 1.9. It is easy but
tedious, and we leave the details to the reader, to show that associative con-
straints and right and left unit constraints are natural and satisfy the Pentagon
Axiom and the Triangle Axiom. Finally the tensor product of two morphisms
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is defined by Proposition 1.8 and, of course, the symmetry isomorphism is the
transformation τ defined in Proposition 1.9. �

2. The group of strong Galois objects

The aim of this section is to introduce the notion of strong Galois H-object
for a cocommutative Hopf quasigroup H . We will prove that the set of isomor-
phism classes of strong H-Galois objects is a group that becomes the classical
Galois group when H is a cocommutative Hopf algebra.

Definition 2.1. Let H be a Hopf quasigroup and A a right H-comodule
magma. We will say that A is a Galois H-object if

(c1) A is faithfully flat.
(c2) The canonical morphism γA = (µA ⊗H) ◦ (A⊗ ρA) : A⊗A → A⊗H

is an isomorphism.

If moreover, fA = γ−1
A ◦ (ηA ⊗H) : H → Ae is a morphism of unital magmas,

we will say that A is a strong Galois H-object.
A morphism between to (strong) Galois H-objects is a morphism of right

H-comodule magmas.
Note that if A is a strong Galois H-object and B is a Galois H-object iso-

morphic to A as Galois H-objects, then B is also a strong Galois H-object
because if g : A → B is the isomorphism, we have γB ◦ (g ⊗ g) = (g ⊗H) ◦ γA
and it follows that fB = (g⊗g)◦fA. Then, fB is a morphism of unital magmas
and B is strong.

Example 2.2. If H is a faithfully flat Hopf quasigroup, H is a strong Galois
H-object because γH = (µH ⊗H) ◦ (H ⊗ δH) is an isomorphism with inverse
γ−1
H = ((µH ◦ (H ⊗ λH))⊗H) ◦ (H ⊗ δH) and fH = (λH ⊗H) ◦ δH : H → He

is a morphism of unital magmas.

Remark 2.3. If H is a Hopf algebra and A is a right H-comodule monoid, we
say that A is a Galois H-object when A is faithfully flat and the canonical
morphism γA is an isomorphism. In this setting every Galois H-object is a
strong Galois H-object because

γA ◦ µAe ◦ ((γ−1
A ◦ (ηA ⊗H))⊗ (γ−1

A ◦ (ηA ⊗H)))

= (µA ⊗H) ◦ (A⊗ µA⊗H) ◦ (A⊗ (γA ◦ γ−1
A ◦ (ηA ⊗H))⊗ ρA)

◦ (cH,A ⊗A) ◦ (H ⊗ (γ−1
A ◦ (ηA ⊗H)))

= (A⊗ µH) ◦ (cH,A ⊗H) ◦ (H ⊗ (γA ◦ γ−1
A ◦ (ηA ⊗H)))

= ηA ⊗ µH

= γA ◦ γ−1
A ◦ (ηA ⊗ µH),

where the equalities follow by (b2) of Definition 1.3, the naturality of c and the
associativity of µA.
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Proposition 2.4. Let H be a Hopf quasigroup and A a Galois H-object. Then

(7)

✲

✲

✲K A⊗H
ηA

ρA

A⊗ ηH

A

is an equalizer diagram.

Proof. First note that

✲

✲

✲A A⊗A⊗ A
A⊗ ηA

A⊗A⊗ ηA

A⊗ ηA ⊗A

A⊗A

is an equalizer diagram. Then, using that A is faithfully flat, so is

✲

✲

✲K A⊗A.
ηA A⊗ ηA

ηA ⊗A

A

On the other hand, γA ◦ (A ⊗ ηA) = A⊗ ηH , γA ◦ (ηA ⊗ A) = ρA. Therefore,
if γA is an isomorphism, (7) is an equalizer diagram. �

Lemma 2.5. Let H be a Hopf quasigroup and let A a Galois H-object. The

following equalities hold:

(i) ρ2A⊗A ◦ γ−1
A = (γ−1

A ⊗H) ◦ (A⊗ δH).

(ii) ρ1A⊗A◦γ
−1
A = (γ−1

A ⊗H)◦(A⊗cH,H)◦(A⊗µH⊗H)◦(ρA⊗((λH⊗H)◦δH)).

Proof. The proof for (i) follows from the identity (γA⊗H)◦ρ2A⊗A = (A⊗δH)◦
γA. To obtain (ii), first we prove that

(8) (A⊗µH⊗H)◦(ρA⊗((λH ⊗H)◦δH))◦γA = (A⊗cH,H)◦(γA⊗H)◦ρ1A⊗A.

Indeed,

(A⊗ µH ⊗H) ◦ (ρA ⊗ ((λH ⊗H) ◦ δH)) ◦ γA

= (A⊗ (µH ◦ (µH ⊗ λH) ◦ (H ⊗ δH))⊗H) ◦ (µA ⊗H ⊗ δH)

◦ (A⊗ cH,A ⊗H) ◦ (ρA ⊗ ρA)

= (µA ⊗H ⊗ ((εH ⊗H) ◦ δH)) ◦ (A⊗ cH,A ⊗H) ◦ (ρA ⊗ ρA)

= (µA ⊗H ⊗H) ◦ (A⊗ cH,A ⊗H) ◦ (ρA ⊗ ρA)

= (µA ⊗ cH,H) ◦ (ρ2A⊗A ⊗H) ◦ ρ1A⊗A

= (A⊗ cH,H) ◦ (γA ⊗H) ◦ ρ1A⊗A,

where the first equality follows by the comodule condition for A, the second one
by (a2-2) of Definition 1.1, the third one by the counit condition, the fourth
and the last ones by the symmetry of c and the naturality of the braiding.
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Then, by (8) we obtain

ρ1A⊗A ◦ γ−1
A

= (γ−1
A ⊗H) ◦ (A⊗ (cH,H ◦ cH,H)) ◦ (γA ⊗H) ◦ ρ1A⊗A ◦ γ−1

A

= (γ−1
A ⊗H) ◦ (A⊗ cH,H) ◦ (A⊗ µH ⊗H) ◦ (ρA ⊗ ((λH ⊗H) ◦ δH))

and (ii) holds. �

Proposition 2.6. Let H be a cocommutative faithfully flat Hopf quasigroup.

The following assertions hold:

(i) If A and B are Galois H-objects so is A • B.
(ii) If A and B are strong Galois H-objects so is A • B.

Proof. First we prove (i). Let A and B be Galois H-objects. By Proposition
1.7 we know that A • B is a unital magma where ηA•B and µA•B are the
factorizations through iA•B of the morphisms ηA⊗B and µA⊗B ◦ (iA•B ⊗ iA•B)
respectively. Moreover, using that H is flat we have that A • B is a right
H-comodule magma where the coaction ρA•B : A • B → A • B ⊗ H is the
factorization of ρ2A⊗B ◦ iA•B (or ρ1A⊗B ◦ iA•B) through iA•B ⊗H .

The objects A and B are faithfully flat and then so is A⊗B. Therefore

✲

✲

✲A⊗B ⊗A •B A⊗B ⊗A⊗B A⊗B ⊗A⊗B ⊗H
A⊗B⊗iA•B

A⊗B⊗ρ1

A⊗B

A⊗B⊗ρ2

A⊗B

is an equalizer diagram. On the other hand, if H is cocommutative

✲

✲

✲A⊗B ⊗H A⊗B ⊗H ⊗H A⊗B ⊗H ⊗H ⊗H
A⊗B⊗δH

A⊗B⊗ρ1

H⊗H

A⊗B⊗ρ2

H⊗H

is an equalizer diagram (see Remark 1.12).
Let ΓA⊗B : A⊗B ⊗A⊗B → A⊗B ⊗H ⊗H be the morphism defined by

ΓA⊗B = (A⊗ cH,B ⊗H) ◦ (γA ⊗ γB) ◦ (A⊗ cB,A ⊗B).

Trivially ΓA⊗B is an isomorphism wit inverse

Γ−1
A⊗B = (A⊗ cA,B ⊗B) ◦ (γ−1

A ⊗ γ−1
B ) ◦ (A⊗ cB,H ⊗H)

and satisfies

(A⊗B ⊗ ρ1H⊗H) ◦ ΓA⊗B ◦ (A⊗B ⊗ iA•B)

= (µA⊗B ⊗ ρ1H⊗H) ◦ (A⊗B ⊗ (((ρ1A⊗B ◦ iA•B)⊗H) ◦ ρA•B))

= (µA⊗B ⊗ ρ1H⊗H) ◦ (A⊗B ⊗ ((iA•B ⊗H ⊗H) ◦ (ρA•B ⊗H) ◦ ρA•B))

= (µA⊗B ⊗H ⊗ (cH,H ◦ δH)) ◦ (A⊗B ⊗ ((iA•B ⊗ δH) ◦ ρA•B))

= (µA⊗B ⊗H ⊗ δH) ◦ (A⊗B ⊗ ((iA•B ⊗H ⊗H) ◦ (ρA•B ⊗H) ◦ ρA•B))

= (A⊗B ⊗ ρ2H⊗H) ◦ ΓA⊗B ◦ (A⊗B ⊗ iA•B),
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where the first equality follows by the naturality of c and the properties of ρA•B ,
the second and the third ones by the comodule structure of A • B, the fourth
one by the cocommutativity of H and the last one was obtained repeating the
same calculus with ρ2H⊗H .

As a consequence, there exists a unique morphism h : A ⊗ B ⊗ A • B →
A⊗B ⊗H such that

(9) (A⊗B ⊗ δH) ◦ h = ΓA⊗B ◦ (A⊗B ⊗ iA•B).

On the other hand, in an analogous way the morphism Γ−1
A⊗B ◦ (A ⊗ B ⊗

δH) : A ⊗ B ⊗H → A ⊗ B ⊗ A ⊗ B factorizes through through the equalizer
A⊗B ⊗ iA•B because by (i) of Lemma 2.5, the naturality and symmetry of c
and the cocommutativity of H we have

(A⊗B ⊗ ρ1A⊗B) ◦ Γ
−1
A⊗B ◦ (A⊗B ⊗ δH)

= (A⊗ cA,B ⊗ cH,B) ◦ (A⊗A⊗ cH,B ⊗B) ◦ (((A ⊗ ρA) ◦ γ
−1
A )⊗ γ−1

B )

◦ (A⊗ cB,H ⊗H) ◦ (A⊗B ⊗ δH)

= (A⊗ cA,B ⊗ cH,B) ◦ (A⊗A⊗ cH,B ⊗B) ◦ (((γ−1
A ⊗H) ◦ (A⊗ δH))⊗ γ−1

B )

◦ (A⊗ cB,H ⊗H) ◦ (A⊗B ⊗ δH)

= (A⊗ cA,B ⊗B ⊗H) ◦ (γ−1
A ⊗ ((γ−1

B ⊗H) ◦ (B ⊗ δH))) ◦ (A⊗ cB,H ⊗H)

◦ (A⊗B ⊗ δH)

= (A⊗B ⊗ ρ2A⊗B) ◦ Γ
−1
A⊗B ◦ (A⊗B ⊗ δH).

Thus, let g be the unique morphism such that

(10) (A⊗B ⊗ iA•B) ◦ g = Γ−1
A⊗B ◦ (A⊗B ⊗ δH).

By (9) and (10)

(A⊗B ⊗ δH) ◦ h ◦ g = ΓA⊗B ◦ (A⊗B ⊗ iA•B) ◦ g

= ΓA⊗B ◦ Γ−1
A⊗B ◦ (A⊗B ⊗ δH)

= A⊗B ⊗ δH ,

(A⊗B ⊗ iA•B) ◦ g ◦ h = Γ−1
A⊗B ◦ (A⊗B ⊗ δH) ◦ h

= Γ−1
A⊗B ◦ ΓA⊗B ◦ (A⊗B ⊗ iA•B)

= A⊗B ⊗ iA•B

and then we obtain that h is an isomorphism with inverse g. As a consequence
A •B is faithfully flat because A, B and H are faithfully flat.

The morphism Γ−1
A⊗B ◦ (iA•B ⊗ δH) : A • B ⊗H → A ⊗ B ⊗ A ⊗ B admits

a factorization αA,B : A • B ⊗ H → A ⊗ B ⊗ A • B through the equalizer

A ⊗ B ⊗ iA•B because as we saw in the previous lines Γ−1
A⊗B ◦ (A ⊗ B ⊗ δH)

admits a factorization through A⊗ B ⊗ iA•B.
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Now consider the equalizer diagram:

✲

✲

✲A •B ⊗A •B A⊗B ⊗A •B A⊗B ⊗H ⊗A •B
iA•B⊗A•B

ρ1

A⊗B⊗A•B

ρ2

A⊗B⊗A•B

We have that

(ρ1A⊗B ⊗ iA•B) ◦ αA,B

= (ρ1A⊗B ⊗A⊗B) ◦ (A⊗ cA,B ⊗B) ◦ (γ−1
A ⊗ γ−1

B ) ◦ (A⊗ cB,H ⊗H)

◦ (iA•B ⊗ δH)

= (A⊗ ((B ⊗ cA,H) ◦ (cA,B ⊗H) ◦ (A⊗ cH,B))⊗B)

◦ (((ρ1A⊗H ◦ γ−1
A )⊗ γ−1

B )) ◦ (A⊗ cB,H ⊗H) ◦ (iA•B ⊗ δH)

= (A⊗ ((B ⊗ cA,H) ◦ (cA,B ⊗H) ◦ (A⊗ cH,B))⊗B)

◦ (((γ−1
A ⊗H) ◦ (A⊗ cH,H) ◦ (A⊗ µH ⊗H)

◦ (ρA ⊗ ((λH ⊗H) ◦ δH)))⊗ γ−1
B ) ◦ (A⊗ cB,H ⊗H) ◦ (iA•B ⊗ δH)

= (A⊗ ((B ⊗ cA,H) ◦ (cA,B ⊗H) ◦ (A⊗ cH,B))⊗B) ◦ (γ−1
A ⊗H ⊗ γ−1

B )

◦ (A⊗ ((cH,H ⊗B) ◦ (µH ⊗ cB,H) ◦ (H ⊗ cB,H ⊗H)

◦ (cB,H ⊗ ((λH ⊗H) ◦ δH))) ⊗H) ◦ ((ρ1A⊗B ◦ iA•B)⊗ δH)

= (A⊗ ((B ⊗ cA,H) ◦ (cA,B ⊗H) ◦ (A⊗ cH,B))⊗B) ◦ (γ−1
A ⊗H ⊗B ⊗B)

◦ (A⊗ ((cH,H ⊗ γ−1
B ) ◦ (H ⊗ cB,H ⊗H) ◦ (cB,H ⊗H ⊗H)

◦ (B ⊗ ((µH ◦ (H ⊗ λH))⊗H)⊗H)))

◦ ((ρ2A⊗B ◦ iA•B)⊗ ((δH ⊗H) ◦ δH))

= (A⊗ ((cH,B ⊗A) ◦ (H ⊗ cA,B) ◦ (cA,H ⊗B))⊗B) ◦ (γ−1
A ⊗H ⊗ γ−1

B )

◦ (A⊗ ((H ⊗ cB,H ⊗H) ◦ (cB,H ⊗ (cH,H ◦ cH,H))

◦ (B ⊗ cH,H ⊗H))) ◦ (A⊗ B ⊗ µH ⊗ (cH,H ◦ δH))

◦ ((ρ2A⊗B ◦ iA•B)⊗ ((λH ⊗H) ◦ δH))

= (A⊗ ((B ⊗ cA,H ⊗B) ◦ (cA,B ⊗ cB,H)) ◦ (γ−1
A ⊗ γ−1

B ⊗H)

◦ (A⊗ cB,H ⊗ cH,H) ◦ (A⊗B ⊗ (cH,H ◦ (µH ⊗H))⊗H)

◦ (((A ⊗ ρB) ◦ iA•B)⊗ ((λH ⊗ (cH,H ◦ δH)) ◦ δH))

= (A⊗ ((B ⊗ cA,H ⊗B) ◦ (cA,B ⊗ cB,H))) ◦ (γ−1
A ⊗ ((γ−1

B ⊗H)

◦ (B ⊗ cH,H) ◦ (B ⊗ µH ⊗H) ◦ (ρB ⊗ ((λH ⊗H) ◦ δH))))

◦ (A⊗ cB,H ⊗H) ◦ (iA•B ⊗ (cH,H ◦ δH))

= (A⊗ ((B ⊗ cA,H) ◦ (cA,B ⊗H) ◦ (A⊗ ρB))⊗B) ◦ (γ−1
A ⊗ γ−1

B )

◦ (A⊗ cB,H ⊗H) ◦ (iA•B ⊗ δH)

= (ρ2A⊗B ⊗ iA•B) ◦ αA,B,
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where the first equality follows by the definition, the second, the fourth and the
fifth ones by the naturality and symmetry of c, the third and the ninth ones
by (ii) of Lemma 2.5, the sixth one by the cocommutativity of H and, finally,
the eighth and the tenth ones by the naturality of c.

Then, there exists a unique morphism βA,B : A • B ⊗H → A • B ⊗ A • B
such that

(11) (iA•B ⊗A •B) ◦ βA,B = αA,B

and then

(12) (iA•B ⊗ iA•B) ◦ βA,B = Γ−1
A⊗B ◦ (iA•B ⊗ δH).

The morphism βA,B satisfies

(iA•B ⊗H) ◦ γA•B ◦ βA,B

= (µA⊗B ⊗H) ◦ (iA•B ⊗ ((iA•B ⊗H) ◦ ρA•B)) ◦ βA,B

= (µA⊗B ⊗H) ◦ (iA•B ⊗ ((A ⊗ ρB) ◦ iA•B)) ◦ βA,B

= (µA ⊗ γB) ◦ (A⊗ cB,A ⊗B) ◦ Γ−1
A⊗B ◦ (iA•B ⊗ δH)

= (((A⊗ εH) ◦ γA ◦ γ−1
A )⊗B ⊗H) ◦ (A⊗ cB,H ⊗H) ◦ (iA•B ⊗ δH)

= iA•B ⊗H

and by the cocommutativity of H we have

(iA•B ⊗ iA•B) ◦ βA,B ◦ γA•B

= Γ−1
A⊗B ◦ (iA•B ⊗ δH) ◦ (µA•B ⊗H) ◦ (A •B ⊗ ρA•B)

= Γ−1
A⊗B ◦ (µA⊗B ⊗ δH) ◦ (iA•B ⊗ ((A⊗ ρB) ◦ iA•B))

= Γ−1
A⊗B ◦ (A⊗B ⊗ cH,H) ◦ (µA ⊗ γB ⊗H) ◦ (A⊗ cB,A ⊗ ρB)

◦ (iA•B ⊗ iA•B)

= (A⊗ cA,B ⊗B) ◦ (γ−1
A ⊗B ⊗B) ◦ (A⊗ cB,H ⊗B)

◦ (µA ⊗B ⊗ (cB,H ◦ ρB)) ◦ (A⊗ cB,A ⊗B) ◦ (iA•B ⊗ iA•B)

= (A⊗ cA,B ⊗B) ◦ (γ−1
A ⊗B ⊗B) ◦ (µA ⊗ cB,H ⊗B)

◦ (A⊗ cB,A ⊗H ⊗B) ◦ (iA•B ⊗ ((ρA ⊗B) ◦ iA•B))

= (((A⊗ cA,B) ◦ ((γ
−1
A ◦ γA)⊗B)) ⊗B) ◦ (A⊗ cB,A ⊗B) ◦ (iA•B ⊗ iA•B)

= iA•B ⊗ iA•B.

Taking into account that H is flat and that A • B is faithfully flat we obtain
that βA,B is the inverse of the canonical morphism γA•B.

Now we assume that A and B are strong Galois H-objects. To prove that
A•B is a strong GaloisH-object we only need to show that fA•B : H → (A•B)e

is a morphism of unital magmas. If fA and fB are morphisms of unital magmas,
by the properties of iA•B and the naturality of c we have

(iA•B ⊗ iA•B) ◦ fA•B ◦ ηH = (A⊗ cA,B ⊗ B) ◦ ((fA ◦ ηH)⊗ (fB ◦ ηH))
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= ηA ⊗ ηB ⊗ ηA ⊗ ηB = (iA•B ⊗ iA•B) ◦ η(A•B)e

and

(iA•B ⊗ iA•B) ◦ µ(A•B)e ◦ (fA•B ⊗ fA•B)

= (A⊗ cA,B ⊗B) ◦ ((µAe ◦ (fA ⊗ fA))⊗ (µBe ◦ (fB ⊗ fB)) ◦ δH⊗H

= (A⊗ cA,B ⊗B) ◦ (fA ⊗ fB) ◦ δH ◦ µH = (iA•B ⊗ iA•B) ◦ fA•B ◦ µH .

Therefore, fA•B◦ηH = η(A•B)e and µ(A•B)e◦(fA•B⊗fA•B) = fA•B◦µH . �

Proposition 2.7. Let H be a cocommutative Hopf quasigroup and A a Galois

H-object. Then the right H-comodule magma A defined in Proposition 1.6 is

a Galois H-object. Moreover, if A is strong so is A.

Proof. To prove that A is a Galois H-object we only need to show that γA is
an isomorphism. We begin by proving the following identity:

(13) (A⊗ (µH ◦ cH,H ◦ (λH ⊗H))) ◦ (ρA ⊗H) ◦ γA = γA ◦ cA,A.

Indeed:

(A⊗ (µH ◦ cH,H ◦ (λH ⊗H))) ◦ (ρA ⊗H) ◦ γA

= (µA ⊗ (µH ◦ (H ⊗ µH) ◦ (cH,H ⊗H) ◦ (H ⊗ cH,H) ◦ (cH,H ⊗H)

◦ (λH ⊗ λH ⊗H) ◦ (H ⊗ δH))) ◦ (A⊗ cH,A ⊗H) ◦ (ρA ⊗ ρA)

= (µA ⊗ (µH ◦ (λH ⊗ µH) ◦ (δH ⊗H) ◦ cH,H ◦ (λH ⊗H)))

◦ (A⊗ cH,A ⊗H) ◦ (ρA ⊗ ρA)

= (µA ⊗H) ◦ (A⊗ cH,A) ◦ (ρA ⊗A)

= γA ◦ cA,A,

where the first equality follows by (b2) of Definition 1.3, (1) and the naturality
of c, the second one by the cocommutativity of H and the naturality of c, the
third one by (a2-1) of Definition 1.1 and the last one by the symmetry and
naturality of c.

Define the morphism γ′

A
: A⊗H → A⊗A by

(14) γ′

A
= cA,A ◦ γ−1

A ◦ (A⊗ (µH ◦ cH,H)) ◦ (ρA ⊗H).

Then, by (13), the naturality of c, the cocommutativity of H and (a2-2) of
Definition 1.1, we have the following:

γA ◦ γ′

A

= γA ◦ cA,A ◦ γ−1
A ◦ (A⊗ (µH ◦ cH,H)) ◦ (ρA ⊗H)

= (A⊗ (µH ◦ cH,H ◦ (λH ⊗H))) ◦ (ρA ⊗ (µH ◦ cH,H)) ◦ (ρA ⊗H)

= (A⊗ (µH ◦ (µH ⊗H) ◦ (H ⊗ cH,H) ◦ (cH,H ⊗H) ◦ (λH ⊗ cH,H)

◦ (δH ⊗H))) ◦ (ρA ⊗H)

= (A⊗ ((µH ◦ (µH ⊗H) ◦ (H ⊗ λH ⊗H) ◦ (H ⊗ δH)) ◦ cH,H)) ◦ (ρA ⊗H)

= idA⊗H .
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Moreover, by a similar reasoning but using (a2-1) of Definition 1.1 instead of
(a2-2) we obtain

γ′

A
◦ γA

= cA,A ◦ γ−1
A ◦ ((µA ◦ cA,A)⊗ (µH ◦ (H ⊗ µH) ◦ (H ⊗ λH ⊗H)

◦ (δH ⊗H) ◦ cH,H)) ◦ (A⊗ cH,A ⊗H) ◦ (ρA ⊗ ρA)

= cA,A ◦ γ−1
A ◦ γA ◦ cA,A

= idA⊗A.

Therefore, γA is an isomorphism and A a Galois H-object.
Finally, it is easy to show that fA = cA,A ◦ fA. Then, if fA is a morphism

of unital magmas, so is fA. Thus if A is strong, A is strong. �

Proposition 2.8. Let H be a cocommutative flat Hopf quasigroup and A a Ga-

lois H-object. Then A•A is isomorphic to H as right H-comodules. Moreover,

if A is strong, the previous isomorphism is a morphism of right H-comodule

magmas.

Proof. First note that, by Proposition 2.4, we know that (7) is an equalizer
diagram and then so is

✲

✲

✲H A⊗H ⊗H
ηA ⊗H ρA ⊗H

A⊗ ηH ⊗H

A⊗H

because H is flat. For the morphism γA ◦ iA•A : A • A :→ A⊗H we have the
following:

(ρA ⊗H) ◦ γA ◦ iA•A

= (µA⊗H ⊗ λH) ◦ (ρA ⊗ ((A ⊗ δH) ◦ ρA)) ◦ iA•A

= (µA⊗H ⊗ λH) ◦ (A⊗H ⊗ ((A⊗ δH) ◦ ρA))

◦ (A⊗ (cA,H ◦ (A⊗ λH) ◦ ρA)) ◦ iA•A

= (µA ⊗ µH ⊗ λH) ◦ (A⊗ ((A ⊗H ⊗ δH) ◦ (A⊗ cH,H)

◦ (A⊗ ((H ⊗ λH) ◦ δH)))) ◦ (A⊗ ρA) ◦ iA•A

= (µA ⊗ ((µH ◦ ((λH ⊗H) ◦ δH)⊗ λH) ◦ δH)) ◦ (A⊗ ρA) ◦ iA•A

= (A⊗ ηH ⊗H) ◦ γA ◦ iA•A,

where the first equality follows by the naturality of c and (b2) of Definition 1.3,
the second one because ρ1

A⊗A
◦ iA•A = ρ2

A⊗A
◦ iA•A, the third one relies on the

symmetry and the naturality of c, the fourth one follows by (1) and the last
one by (3).

Therefore, there exists an unique morphism hA : A •A → H such that

(15) (ηA ⊗H) ◦ hA = γA ◦ iA•A.
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The morphism hA is a right comodule morphism because by the cocommuta-
tivity of H , (1) and the comodule properties of A, we have

ηA ⊗ ((hA ⊗H) ◦ ρA•A)

= ((γA ◦ iA•A)⊗H) ◦ ρA•A

= ((µA ◦ cA,A)⊗ ((λH ⊗ λH) ◦ δH)) ◦ (A ⊗ ρA) ◦ iA•A

= ((µA ◦ cA,A)⊗ ((λH ⊗ λH) ◦ cH,H ◦ δH)) ◦ (A⊗ ρA) ◦ iA•A

= ((µA ◦ cA,A)⊗ (δH ◦ λH)) ◦ (A⊗ ρA) ◦ iA•A

= (A⊗ δH) ◦ γA ◦ iA•A

= ηA ⊗ (δH ◦ hA)

and using that ηA⊗H⊗H is an equalizer morphism we obtain (h⊗H)◦ρA•A =
δH ◦ hA.

On the other hand, for fA : H → A⊗A we have the following

(γA ⊗H) ◦ ρ1
A⊗A

◦ fA

= (µA ⊗ λH ⊗H) ◦ (cA,A ⊗H ⊗H) ◦ (A⊗ ρA ⊗H) ◦ (A⊗ cH,A)

◦ (ρA ⊗A) ◦ cA,A ◦ fA

= (µA ⊗ λH ⊗H) ◦ (A⊗ cH,A ⊗H) ◦ (ρA ⊗ ρA) ◦ fA

= (µA ⊗ ((λH ⊗H) ◦ γ−1
H ◦ γH)) ◦ (A⊗ cH,A ⊗H) ◦ (ρA ⊗ ρA) ◦ fA

= (A⊗ (λH ◦ µH)⊗H) ◦ (ρA ⊗ ((λH ⊗H) ◦ δH)) ◦ γA ◦ fA

= ηA ⊗ (((λH ◦ λH)⊗H) ◦ δH)

= ηA ⊗ δH ,

where the first equality follows because fA = cA,A ◦ fA, the second one by
the symmetry and the naturality of c. In the third one we used that H is a
Galois H-object and the fourth and the sixth ones are a consequence of (b1) of
Definition 1.3. Finally, in the fifth one we applied that A is a Galois H-object,
and the last one relies on the cocommutativity of H . Also

(γA ⊗H) ◦ ρ2
A⊗A

◦ fA

= ((µA ◦ cA,A)⊗ ((λH ⊗ λH) ◦ δH)) ◦ (A⊗ ρA) ◦ cA,A ◦ fA

= (µA ⊗ ((λH ⊗ λH) ◦ δH)) ◦ (A⊗ cH,A) ◦ (ρA ⊗A) ◦ fA

= (µA ⊗ ((εH ⊗ ((λH ⊗ λH) ◦ δH)) ◦ cH,H ◦ ((µH ◦ (µH ⊗ λH)

◦ (H ⊗ δH))⊗H))) ◦ (A⊗ cH,A ⊗ δH) ◦ (ρA ⊗ ρA) ◦ fA

= (A⊗ ((λH ⊗ λH) ◦ δH)) ◦ (A⊗ µH) ◦ ((ρA ◦ ηA)⊗ λH)

= ηA ⊗ δH ,

where the first equality follows by (b1) of Definition 1.3 and the comodule
properties of A, the second one by the naturality of c, the third one by (a2-2)
of Definition 1.1 and the counit properties, the fourth one by (b2) of Definition
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1.3 and in the last one we used that A is a Galois H-object, (b1) of Definition
1.3 and the cocommutativity of H .

Then, ρ1
A⊗A

◦ fA = ρ2
A⊗A

◦ fA and, as a consequence, there exists a unique

morphism h′
A : H → A •A such that

(16) iA•A ◦ h′
A = fA.

Therefore, by (15) and (16) we have

iA•A ◦ h′
A ◦ hA = fA ◦ hA = γ−1

A
◦ (ηA ⊗H) ◦ hA = γ−1

A
◦ γA ◦ iA•A = iA•A

and

(ηA⊗H)◦hA◦h′
A = γA ◦ iA•A◦h′

A = γA ◦fA = γA ◦γ−1

A
◦(ηA⊗H) = (ηA⊗H).

Then, h′
A ◦ hA = idA•A and hA ◦ h′

A = idH and h is an isomorphism.
Finally, assume that A is strong. By (16) and the equality fA = cA,A ◦ fA

we obtain that h′
A is a morphism of unital magmas. Then hA is a morphism

of unital magmas and the proof is finished. �

Remark 2.9. Note that, in the Hopf algebra setting, for any Galois H-object
A, the morphism hA obtained in the previous proposition is a morphism of
monoids because this property can be deduced from the associativity of the
product defined in A. In the Hopf quasigroup world this proof does not work
because A is a magma.

Theorem 2.10. Let H be a cocommutative faithfully flat Hopf quasigroup.

The set of isomorphism classes of Galois H-objects is a commutative monoid.

Moreover, the set of isomorphism classes of strong Galois H-objects is a com-

mutative group.

Proof. Let GalC(H) be the set of isomorphism classes of Galois H-objects. For
a Galois H-object A we denote its class in GalC(H) by [A]. By by Propositions
2.6 and 1.8, the product

(17) [A] · [B] = [A • B]

is well-defined. By Propositions 1.10, 1.9 and 1.11 we obtain that GalC(H) is
a commutative monoid with unit [H].

If we denote by GalsC(H) the set of isomorphism classes of strong Galois
H-objects, with the product defined in (17) for Galois H-objects, GalsC(H) is
a commutative group because by (ii) of Proposition 2.6 the product of strong
Galois H-objects is a strong Galois H-object, by Example 2.2 we know that H
is a strong Galois H-object and by Propositions 2.7 and 2.8, the inverse of [A]
in GalsC(H) is [A]. �

Definition 2.11. Let H be a cocommutative faithfully flat Hopf quasigroup.
If A is a (strong) Galois H-object, we will say that A has a normal basis if
(A, ρA) is isomorphic to (H, δH) as right H-comodules. We denote by nA the
H-comodule isomorphism between A and H .
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Obviously, NC(H), the set of isomorphism classes of Galois H-objects with
normal basis, is a submonoid of GalC(H) because H = (H, δH) is a Galois H-
object with normal basis and if A, B are GaloisH-objects with normal basis and
associated isomorphisms nA, nB respectively, then A • B is a Galois H-object
with normal basis and associatedH-comodule isomorphism nA•B = rH◦nA•nB

where nA•nB is defined as in Proposition 1.8 and rH is the isomorphism defined
in Proposition 1.11. Moreover, for a strong Galois H-object with normal basis
A, with associated isomorphism nA, we have that A = (A, ρA) is also a strong
Galois H-object with normal basis, where nA = λH ◦ nA, and then, if we
denote by Ns

C(H) the set of isomorphism classes of strong Galois H-objects
with normal basis, Ns

C(H) is a subgroup of GalsC(H).
Note that, if H is a Hopf algebra we have that GalsC(H) = GalC(H) and

Ns
C(H) = NC(H). Therefore, in the associative setting we recover the classical

group of Galois H-objects.

Remark 2.12. In this remark we use some classical results of algebraicK-theory
(see [3] for the details). Let G(C, H) and Gs(C, H) be the categories of Galois
H-objects and strong Galois H-objects, respectively. Then, by Proposition
1.13 these categories are symmetric monoidal and then they are categories with
product. The Grothendieck group of G(C, H) is the abelian group generated by
the isomorphisms classes of objects A of G(C, H) module the relations [A•B] =
[A]·[B]. This group will be denoted by K0G(C, H) and, by the general theory of
Grothendieck groups, we know that for A, B in G(C, H), [A] = [B] inK0G(C, H)
if and only if there exists a D in G(C, H) such that A • D is isomorphic in
G(C, H) to B • D. The unit of K0G(C, H) is [H]. In a similar way we can
define K0G

s(C, H), but in this case K0G
s(C, H) = GalsC(H) because the set of

isomorphism classes of objects of Gs(C, H) is a group.
The inclusion functor i : Gs(C, H) → G(C, H) is a product preserving functor

and then we have a group morphism K0i : GalsC(H) → K0G(C, H). If [A] ∈
Ker(K0i) we have that [A] = [H] inK0G(C, H). Then there exists D in G(C, H)
such that A•D ∼= H •D ∼= D in G(C, H). As a consequence A•D•D ∼= D•D in
G(C, H). Then, By Proposition 2.8, A ∼= H as right H-comodules. Therefore
A is a strong Galois H-object with normal basis and Ker(K0i) is a subgroup
of Ns

C(H).
The full subcategory H = {H} of Gs(C, H) is cofinal because, for all A in

Gs(C, H), A •A ∼= H as right H-comodule magmas. Therefore, the Whitehead
group of Gs(C, H) is isomorphic to the Whitehead group of H. Therefore,

K1G
s(C, H) ∼= AutGs(C,H)(H).

The group AutGs(C,H)(H) admits a good explanation in terms of grouplike
elements of a suitable Hopf quasigroup if H is finite, that is, if there exists an
object H∗ in C and an adjunction H ⊗ − ⊣ H∗ ⊗ −. For this adjunction we
will denote with aH : idC → H∗ ⊗H ⊗− and bH : H ⊗H∗ ⊗− → idC the unit
and the counit respectively. The object H∗ will be called the dual of H .
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AHopf coquasigroupD in C is a monoid (D, ηD, µD) and a counital comagma
(D, εD, δD) such that the following axioms hold:

(d1) εD and δD are morphisms of monoids.
(d2) There exists λD : D → D in C (called the antipode of D) such that:

(d2-1) (µD ⊗D) ◦ (λD ⊗ δD) ◦ δD

= ηD ⊗D

= (µD ⊗D) ◦ (D ⊗ ((λD ⊗D) ◦ δD)) ◦ δD.

(d2-2) (D ⊗ µD) ◦ (δD ⊗ λD) ◦ δD

= D ⊗ ηD

= (D ⊗ µD) ◦ (((D ⊗ λD) ◦ δD)⊗D) ◦ δD.

As in the case of quasigroups, the antipode is unique, antimultiplicative,
anticomultiplicative, leaves the unit and the counit invariable and satisfies (3).

If D is a Hopf coquasigroup we define G(D) as the set of morphisms h :
K → D such that δD ◦h = h⊗h and εD ◦h = idK . If D is commutative, G(D)
with the convolution h ∗ g = µD ◦ (h ⊗ g) is a commutative group, called the
group of grouplike morphisms of D. Note that the unit element of G(D) is ηD
and the inverse of h ∈ G(D) is h−1 = λD ◦ h.

It is easy to show that, if H is a finite cocommutative Hopf quasigroup, its
dual H∗ is a commutative finite Hopf coquasigroup where:

ηH∗ = (H∗ ⊗ εH) ◦ aH ,

µH∗ = (H∗ ⊗ bH) ◦ (H∗ ⊗H ⊗ bH ⊗H∗) ◦ (H∗ ⊗ δH ⊗H∗ ⊗H∗)

◦ (aH ⊗H∗ ⊗H∗)),

εH∗ = bH ◦ (ηH ⊗H∗),

δH∗ = (H∗ ⊗H∗ ⊗ (bH ◦ (µH ⊗H∗))) ◦ (H∗ ⊗ aH ⊗H ⊗H∗) ◦ (aH ⊗H∗))

and the antipode is (H∗ ⊗ bH) ◦ (H∗ ⊗ λH ⊗H∗) ◦ (aH ⊗H∗).
The groups G(H∗) and AutGs(C,H)(H) are isomorphic. The proof is equal

to the one given in Proposition 3.7 of [14]. If α ∈ AutGs(C,H)(H), the mor-
phism zα = (H∗ ⊗ (εH ◦ α)) ◦ aH is in G(H∗). Then, we define the map
AutGs(C,H)(H) → G(H∗) by z(α) = zα. On the other hand, if h ∈ G(H∗),
then xh = (H ⊗ bH) ◦ (δH ⊗ h) : H → H is a morphism of Galois H-objects
and then, by Remark 1.4, it is an isomorphism, that is xh ∈ AutGs(C,H)(H).
The map x : G(H∗) → AutGs(C,H)(H) defined by x(h) = xh is the inverse of z.
Therefore,

K1G
s(C, H) ∼= G(H∗).

Finally, Ns(C, H) is the subcategory of Gs(C, H) whose objects are the strong
Galois H-objects with normal basis, note that H = {H} it is also cofinal in
Ns(C, H) and then

K1N
s(C, H) ∼= G(H∗).
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3. Invertible comodules with geometric normal basis

This section is devoted to study the connections between Galois H-objects
and invertible comodules with geometric normal basis. First of all, we intro-
duce the notion of invertible comodule with geometric normal basis which is a
generalization to the non associative setting of the one defined by Caenepeel
in [6].

Definition 3.1. Let H be a cocommutative faithfully flat Hopf quasigroup.
A right H-comodule M = (M,ρM ) is called invertible with geometric normal
basis if there exist a faithfully flat unital magma S and an isomorphism hM :
S ⊗M → S ⊗H of right H-comodules such that hM is almost lineal, that is

(18) hM = (µS ⊗H) ◦ (S ⊗ (hM ◦ (ηS ⊗M))).

A morphism between two invertible right H-comodules with normal basis is a
morphism of right H-comodules.

Note that, if S is a monoid, hM is a morphism of left S-modules, for ϕS⊗M =
µS⊗M and ϕS⊗H = µS⊗H , if and only if (18) holds. Then in the Hopf algebra
setting this definition is the one introduced by Caenepeel in [6].

Example 3.2. Let H be a cocommutative faithfully flat Hopf quasigroup and
let A = (A, ρA) be a Galois H-object. Then A = (A, ρA) is an invertible right
H-comodule with geometric normal basis because hA = γA is an isomorphism of
right H-comodules and trivially γA is almost lineal. In particular, H = (H, δH)
is an example of invertible right H-comodule with geometric normal basis.

Proposition 3.3. Let H be a cocommutative faithfully flat Hopf quasigroup

and M, N be invertible right H-comodules with geometric normal basis. Then

the right H-comodule M •N = (M • N, ρM•N ), where M • N and ρM•N are

defined as in Proposition 1.7, is a right H-comodule with geometric normal

basis.

Proof. Let S, R and hM , hN be the faithfully flat unital magmas and the
isomorphisms of right H-comodules associated to M and N respectively. Then
T = S ⊗R is faithfully flat. On the other hand,

✲

✲

✲T ⊗M •N T ⊗M ⊗N T ⊗M ⊗N ⊗H
T⊗iM•N

T⊗ρ1

M⊗N

T⊗ρ2

M⊗N

and

✲

✲

✲T ⊗H T ⊗H ⊗H T ⊗H ⊗H ⊗H
T⊗δH

T⊗ρ1

H⊗H

T⊗ρ2

H⊗H

are equalizer diagrams and for the morphism

gM⊗N =(S⊗cR,H⊗H)◦(hM⊗hN )◦(S⊗cR,M⊗N) :S⊗R⊗M⊗N→S⊗R⊗H⊗H
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we have that

(S ⊗R⊗ ρ1H⊗H) ◦ gM⊗N ◦ (S ⊗R⊗ iM•N )

= (S ⊗ cH,R ⊗ cH,H) ◦ (S ⊗H ⊗ cH,R ⊗H) ◦ (((S ⊗ δH) ◦ hM )⊗ hN )

◦ (S ⊗ cR,M ⊗N) ◦ (S ⊗R⊗ iM•N )

= (S ⊗ cH,R ⊗ cH,H) ◦ (S ⊗H ⊗ cH,R ⊗H) ◦ (((hM ⊗H) ◦ (S ⊗ ρM ))⊗ hN )

◦ (S ⊗ cR,M ⊗N) ◦ (S ⊗R⊗ iM•N )

= (((S ⊗ cH,R ⊗H) ◦ (hM ⊗ hN ))⊗H) ◦ (S ⊗ cR,M ⊗N ⊗H)

◦ (S ⊗R⊗ ((M ⊗ cH,N ) ◦ (ρM ⊗N) ◦ iM•N ))

= (((S ⊗ cH,R ⊗H) ◦ (hM ⊗ hN ))⊗H) ◦ (S ⊗ cM,R ⊗ ((M ⊗ ρN ) ◦ iM•N ))

= (S ⊗R⊗ ρ2H⊗H) ◦ gM⊗N ◦ (S ⊗R⊗ iM•N ),

where the first and the third equalities follow by the naturality of c, the sec-
ond and the fifth ones by the comodule morphism condition for hM and hN

respectively and finally the fourth one by the properties of iM•N .
Therefore, there exists a unique morphism hM•N : T ⊗M •N → T ⊗H such

that

(19) (T ⊗ δH) ◦ hM•N = gM⊗N ◦ (T ⊗ iM•N ).

Moreover, if we define the morphism

g′M⊗N=(S⊗cM,R⊗N)◦(h−1
M ⊗h−1

N )◦(S⊗cR,H⊗H) :S⊗R⊗H⊗H→S⊗R⊗M⊗N

by the naturality of c, the comodule morphism condition for h−1
M and h−1

N and
the cocommutativity of H , the following equalities hold

(S ⊗R⊗ ρ1M⊗N ) ◦ g′M⊗N ◦ (S ⊗R⊗ δH)

= (S ⊗ cM,R ⊗ cH,N) ◦ (S ⊗M ⊗ cH,R ⊗N) ◦ (((S ⊗ ρM ) ◦ h−1
M )⊗ h−1

N )

◦ (S ⊗ cH,R ⊗H) ◦ (S ⊗R⊗ δH)

= (S ⊗ cM,R ⊗ cH,N) ◦ (S ⊗M ⊗ cH,R ⊗N) ◦ (((h−1
M ⊗H) ◦ (S ⊗ δH))⊗ h−1

N )

◦ (S ⊗ cH,R ⊗H) ◦ (S ⊗R⊗ δH)

= (g′M⊗N ⊗H) ◦ (S ⊗R⊗ ((H ⊗ δH) ◦ δH))

= (S ⊗R⊗ ρ2M⊗N ) ◦ g′M⊗N ◦ (S ⊗R⊗ δH).

As a consequence, there exists a unique morphism h′
M•N : T ⊗H → T ⊗M •N

such that

(20) (T ⊗ iM•N ) ◦ h′
M•N = g′M⊗N ◦ (T ⊗ δH).

Thus, by (19) and (20)

hM•N ◦ h′
M•N = (T ⊗ ((εH ⊗H) ◦ δH)) ◦ hM•N ◦ h′

M•N

= (T ⊗ εH ⊗H) ◦ gM⊗N ◦ (T ⊗ iM•N ) ◦ h′
M•N

= (T ⊗ εH ⊗H) ◦ gM⊗N ◦ g′M⊗N ◦ (T ⊗ δH) = idT⊗H
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and

(T ⊗ iM•N ) ◦ h′
M•N ◦ hM•N = g′M⊗N ◦ (T ⊗ δH) ◦ hM•N

= g′M⊗N ◦ gM⊗N ◦ (T ⊗ iM•N ) = T ⊗ iM•N

and then hM•N is an isomorphism with inverse h−1
M•N = h′

M•N .
The morphism hM•N is a morphism of right H-comodules because

(hM•N ⊗H) ◦ (T ⊗ ρM•N )

= (T ⊗ ((H ⊗ εH) ◦ δH)⊗H) ◦ (hM•N ⊗H) ◦ (T ⊗ ρM•N )

= (T ⊗H ⊗ εH ⊗H) ◦ (gM⊗N ⊗H) ◦ (T ⊗ ((iM•N ⊗H) ◦ ρM•N ))

= (T ⊗H ⊗ εH ⊗H) ◦ (gM⊗N ⊗H) ◦ (T ⊗ ((M ⊗ ρN) ◦ iM•N ))

= (T ⊗H ⊗ ((H ⊗ εH) ◦ δH)) ◦ gM⊗N ◦ (T ⊗ iM•N )

= (T ⊗ δH) ◦ hM•N ,

where the first equality follows by the counit property, the second and the last
ones by (19), the third one the properties of ρM•N and the fourth one by the
comodule condition for hN .

Finally, we will prove that hM•N is almost lineal. Indeed:

(µT ⊗H) ◦ (T ⊗ (hM•N ◦ (ηT ⊗M •N)))

= (µT ⊗ ((εH ⊗H) ◦ δH)) ◦ (T ⊗ (hM•N ◦ (ηT ⊗M •N)))

= (µS⊗R ⊗ εH ⊗H) ◦ (S ⊗R⊗ (gM⊗N ◦ (ηS ⊗ ηR ⊗ iM•N )))

= (S ⊗ εH ⊗R⊗H) ◦ (((µS ⊗H) ◦ (S ⊗ (hM ◦ (ηS ⊗M))))⊗ ((µR ⊗H)

◦ (R ⊗ (hN ◦ (ηR ⊗N))))) ◦ (S ⊗ cR,M ⊗N) ◦ (S ⊗R⊗ iM•N )

= (T ⊗ εH ⊗H) ◦ gM⊗N ◦ (T ⊗ iM•N )

= (T ⊗ ((εH ⊗H) ◦ δH)) ◦ hM•N

= hM•N .

In the last equalities, the first and the sixth ones follow by the properties of the
counit, the second and the fifth ones by (19), the third one is a consequence of
the naturality of c and the fourth one relies on the almost lineal condition for
hM and hN . �

As a direct consequence of this proposition we have the following theorem.

Theorem 3.4. Let H be a cocommutative faithfully flat Hopf quasigroup. If

we denote by Pgnb(K,H) the category whose objects are the invertible right

H-comodules with geometric normal basis and whose morphisms are the mor-

phisms of right H-comodules between them, Pgnb(K,H) with the product defined

in the previous proposition is a symmetric monoidal category where the unit

object is H and the symmetry isomorphisms, the left, right an associative con-

straints are defined as in Proposition 1.13. Moreover, the set of isomorphism

classes in Pgnb(K,H) is a monoid that we will denote by Picgnb(K,H).
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Remark 3.5. There is a monoid morphism ω : GalC(H) → Pgnb(K,H) defined
by ω([A]) = [A]. If ω([A]) = [H] we have that A ∼= H as right H-comodules.
Then [A] ∈ NC(H). Also, if [A] ∈ GalsC(H) and ω([A]) = [H], [A] ∈ Ns

C(H).
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