4,559 research outputs found

    CNO behaviour in planet-harbouring stars. II. Carbon abundances in stars with and without planets using the CH band

    Full text link
    Context. Carbon, oxygen and nitrogen (CNO) are key elements in stellar formation and evolution, and their abundances should also have a significant impact on planetary formation and evolution. Aims. We present a detailed spectroscopic analysis of 1110 solar-type stars, 143 of which are known to have planetary companions. We have determined the carbon abundances of these stars and investigate a possible connection between C and the presence of planetary companions. Methods. We used the HARPS spectrograph to obtain high-resolution optical spectra of our targets. Spectral synthesis of the CH band at 4300\AA was performed with the spectral synthesis codes MOOG and FITTING. Results. We have studied carbon in several reliable spectral windows and have obtained abundances and distributions that show that planet host stars are carbon rich when compared to single stars, a signature caused by the known metal-rich nature of stars with planets. We find no different behaviour when separating the stars by the mass of the planetary companion. Conclusions. We conclude that reliable carbon abundances can be derived for solar-type stars from the CH band at 4300\AA. We confirm two different slope trends for [C/Fe] with [Fe/H] because the behaviour is opposite for stars above and below solar values. We observe a flat distribution of the [C/Fe] ratio for all planetary masses, a finding that apparently excludes any clear connection between the [C/Fe] abundance ratio and planetary mass.Comment: 10 pages, 10 figures. Accepted to A&

    C/O vs Mg/Si ratios in solar type stars: The HARPS sample

    Full text link
    Aims. We present a detailed study of the Mg/Si and C/O ratios and their importance in determining the mineralogy of planetary companions. Methods. Using 499 solar-like stars from the HARPS sample, we determine C/O and Mg/Si elemental abundance ratios to study the nature of the possible planets formed. We separated the planetary population in low-mass planets ( < 30 M\rm M_{\odot}) and high-mass planets ( > 30 M\rm M_{\odot}) to test for possible relation with the mass. Results. We find a diversity of mineralogical ratios that reveal the different kinds of planetary systems that can be formed, most of them dissimilar to our solar system. The different values of the Mg/Si and C/O ratios can determine different composition of planets formed. We found that 100\% of our planetary sample present C/O < 0.8. 86\% of stars with high-mass companions present 0.8 > C/O > 0.4, while 14\% present C/O values lower than 0.4. Regarding Mg/Si, all stars with low-mass planetary companion showed values between 1 and 2, while 85% of the high-mass companion sample does. The other 15\% showed Mg/Si values below 1. No stars with planets were found with Mg/Si > 2. Planet hosts with low-mass companions present C/O and Mg/Si ratios similar to those found in the Sun, whereas stars with high-mass companions have lower C/O.Comment: 9 pages, 12 figues. Accepted in A&

    The CaT strength in Seyfert nuclei revisited: analyzing young stars and non-stellar light contributions to the spectra

    Get PDF
    In a former paper (Garcia-Rissmann et al. 2005; hereafter Paper I), we have presented spectra of 64 active, 9 normal and 5 Starburst galaxies in the region around the near-IR Calcium triplet absorption lines and the [SIII]9069 line. In the present paper we analyze the CaT strength (WCaT), and kinematical products derived in that study, namely stellar and ionized gas velocity dispersions. Our main results may be summarized as follows: (1) Seyfert 2s show no sign of dilution in WCaT with respect to the values spanned by normal galaxies, even when optical absorption lines such as the CaII K band at 3933 A are much weaker than in old, bulge-like stellar populations. (2) The location of Seyfert 2s in the WCaT-WCaK plane is consistent with evolutionary synthesis models. The implication is that the source responsible for the dilution of optical lines in these AGN is a young stellar population, rather than an AGN featureless continuum, confirming the conclusion of the pioneer study of Terlevich, Diaz & Terlevich. (3) In Seyfert 1s, both W[SIII] and WCaT tend to be diluted due to the presence of a non-stellar component, in agreement with the unification paradigm. (4) A comparison of stellar and gas velocity dispersions confirms the existence of a correlation between the typical velocities of stars and clouds of the Narrow Line Region. The strength and scatter around this correlation are similar to those previously obtained from the [OIII]5007 line width.Comment: 14 pages, 15 figures. Paper accepted for publication in MNRA

    Exact-Diagonalization Studies of Inelastic Light Scattering in Self-Assembled Quantum Dots

    Full text link
    We report exact diagonalization studies of inelastic light scattering in few-electron quantum dots under the strong confinement regime characteristic of self-assembled dots. We apply the orthodox (second-order) theory for scattering due to electronic excitations, leaving for the future the consideration of higher-order effects in the formalism (phonons, for example), which seem relevant in the theoretical description of available experiments. Our numerical results stress the dominance of monopole peaks in Raman spectra and the breakdown of selection rules in open-shell dots. The dependence of these spectra on the number of electrons in the dot and the incident photon energy is explicitly shown. Qualitative comparisons are made with recent experimental results.Comment: 11 pages, 11 figure

    Curves in quantum state space, geometric phases, and the brachistophase

    Full text link
    Given a curve in quantum spin state space, we inquire what is the relation between its geometry and the geometric phase accumulated along it. Motivated by Mukunda and Simon's result that geodesics (in the standard Fubini-Study metric) do not accumulate geometric phase, we find a general expression for the derivatives (of various orders) of the geometric phase in terms of the covariant derivatives of the curve. As an application of our results, we put forward the brachistophase problem: given a quantum state, find the (appropriately normalized) hamiltonian that maximizes the accumulated geometric phase after time τ\tau - we find an analytical solution for all spin values, valid for small τ\tau. For example, the optimal evolution of a spin coherent state consists of a single Majorana star separating from the rest and tracing out a circle on the Majorana sphere.Comment: 23 pages, 6 figure

    The detached dust and gas shells around the carbon star U Ant

    Get PDF
    Context: Geometrically thin, detached shells of gas have been found around a handful of carbon stars. --Aims: Previous observations of scattered stellar light in the circumstellar medium around the carbon star U Ant were taken through filters centred on the resonance lines of K and Na. These observations could not separate the scattering by dust and atoms. The aim of this paper is to remedy this situation. --Methods: We have obtained polarization data on stellar light scattered in the circumstellar medium around U Ant through filters which contain no strong lines, making it possible to differentiate between the two scattering agents. Kinematic, as well as spatial, information on the gas shells were obtained through high-resolution echelle spectrograph observations of the KI and NaD lines. --Results: We confirm the existence of two detached shells around U Ant. The inner shell (at a radius of approx 43" and a width of approx 2") consists mainly of gas, while the outer shell (at a radius of approx 50" and a width of approx 7") appears to consist exclusively of dust. Both shells appear to have an over-all spherical geometry. The gas shell mass is estimated to be 2x10^-3 M(Sun), while the mass of the dust shell is estimated to be 5x10^-5 M(Sun). The derived expansion velocity, from the KI and NaD lines, of the gas shell, 19.5 km/s, agrees with that obtained from CO radio line data. The inferred shell age is 2700 years. There is structure, e.g. in the form of arcs, inside the gas shell, but it is not clear whether these are due to additional shells. --Conclusions: Our results support the hypothesis that the observed geometrically thin, detached shells around carbon stars are the results of brief periods of intense mass loss, probably associated with thermal pulses, and subsequent wind-wind interactions

    Measurement and interpretation of electrokinetic phenomena - (IUPAC technical report)

    Get PDF
    In this report, the status quo and recent progress in electrokinetics are reviewed. Practical rules are recommended for performing electrokinetic measurements and interpreting their results in terms of well-defined quantities, the most familiar being the ζ-potential or electrokinetic potential. This potential is a property of charged interfaces, and it should be independent of the technique used for its determination. However, often the ζ-potential is not the only property electrokinetically characterizing the electrical state of the interfacial region; the excess conductivity of the stagnant layer is an additional parameter. The requirement to obtain the ζ-potential is that electrokinetic theories be correctly used and applied within their range of validity. Basic theories and their application ranges are discussed. A thorough description of the main electrokinetic methods is given; special attention is paid to their ranges of applicability as well as to the validity of the underlying theoretical models. Electrokinetic consistency tests are proposed in order to assess the validity of the ζ-potentials obtained. The recommendations given in the report apply mainly to smooth and homogeneous solid particles and plugs in aqueous systems; some attention is paid to nonaqueous media and less ideal surfaces.Financial assistance from IUPAC is gratefully acknowledged
    corecore