2,446 research outputs found

    Astrophysical parameters and orbital solution of the peculiar X-ray transient IGR J00370+6122

    Get PDF
    BD+6073 is the optical counterpart of the X-ray source IGR J00370+6122, a probable accretion-powered X-ray pulsar. The X-ray light curve of this binary system shows clear periodicity at 15.7 d, which has been interpreted as repeated outbursts around the periastron of an eccentric orbit. We obtained high-resolution spectra of BD+6073 at different epochs. We used the FASTWind code to generate a stellar atmosphere model to fit the observed spectrum and obtain physical magnitudes. The synthetic spectrum was used as a template for cross-correlation with the observed spectra to measure radial velocities. The radial velocity curve provided an orbital solution for the system. We have also analysed the RXTE/ASM and Swift/BAT light curves to confirm the stability of the periodicity. BD +6073 is a BN0.7 Ib low-luminosity supergiant located at an approximate distance of 3.1 kpc, in the CasOB4 association. We derive Teff=24000 K and log gc=3.0, and chemical abundances consistent with a moderately high level of evolution. The spectroscopic and evolutionary masses are consistent at the 1 sigma level with a mass of 15 solar masses. The recurrence time of the X-ray flares is the orbital period of the system. The NS is in a high eccentricity (e=0.56) orbit, and the X-ray emission is strongly peaked around orbital phase 0.2, though the observations are consistent with some level of X-ray activity happening at all orbital phases. The X-ray behaviour of IGR J00370+6122 is reminiscent of intermediate SFXTs, though its peak luminosity is rather low. The orbit is somewhat wider than those of classical persistent supergiant X-ray binaries, which, combined with the low luminosity of the mass donor, explains the low X-ray luminosity. IGR J00370+6122 will likely evolve towards a persistent supergiant system, highlighting the evolutionary connection between different classes of wind-accreting X-ray sources.Comment: Accepted for publication in A&

    Carbon and ecological footprints as tools for evaluating the environmental impact of coal mine ventilation air

    Get PDF
    Coal mines ventilation gases are an important source of methane emissions. Common ventilation systems are designed to ensure safe working conditions in the shafts, leading to huge ventilation gas flow rates. Traditionally, low attention has been paid to such emissions because of their low methane concentration. However, it is necessary to take into account that although the concentration of methane is very low (typically <1%), the volume of air that ventilation systems move is large, and therefore these emissions constitute the largest source of greenhouse gases from underground coal mines. This work proposes the use of ecological and carbon footprints approaches as a tool for determining the relative importance of these emissions in comparison to the other direct and indirect environmental impacts from the coal mining activity. The study has been performed in the main ventilations shafts of the mining company HUNOSA, located at NW Spain (bituminous coal). Results indicate that ventilation air methane is a key fraction of the total emissions of greenhouse gases releases in this activity (60–70%)

    Accretion and photodesorption of CO ice as a function of the incident angle of deposition

    Get PDF
    Non-thermal desorption of inter- and circum-stellar ice mantles on dust grains, in particular ultraviolet photon-induced desorption, has gained importance in recent years. These processes may account for the observed gas phase abundances of molecules like CO toward cold interstellar clouds. Ice mantle growth results from gas molecules impinging on the dust from all directions and incidence angles. Nevertheless, the effect of the incident angle for deposition on ice photo-desorption rate has not been studied. This work explores the impact on the accretion and photodesorption rates of the incidence angle of CO gas molecules with the cold surface during deposition of a CO ice layer. Infrared spectroscopy monitored CO ice upon deposition at different angles, ultraviolet-irradiation, and subsequent warm-up. Vacuum-ultraviolet spectroscopy and a Ni-mesh measured the emission of the ultraviolet lamp. Molecules ejected from the ice to the gas during irradiation or warm-up were characterized by a quadrupole mass spectrometer. The photodesorption rate of CO ice deposited at 11 K and different incident angles was rather stable between 0 and 45^{\circ}. A maximum in the CO photodesorption rate appeared around 70^{\circ}-incidence deposition angle. The same deposition angle leads to the maximum surface area of water ice. Although this study of the surface area could not be performed for CO ice, the similar angle dependence in the photodesorption and the ice surface area suggests that they are closely related. Further evidence for a dependence of CO ice morphology on deposition angle is provided by thermal desorption of CO ice experiments

    Wormholes and Ringholes in a Dark-Energy Universe

    Get PDF
    The effects that the present accelerating expansion of the universe has on the size and shape of Lorentzian wormholes and ringholes are considered. It is shown that, quite similarly to how it occurs for inflating wormholes, relative to the initial embedding-space coordinate system, whereas the shape of the considered holes is always preserved with time, their size is driven by the expansion to increase by a factor which is proportional to the scale factor of the universe. In the case that dark energy is phantom energy, which is not excluded by present constraints on the dark-energy equation of state, that size increase with time becomes quite more remarkable, and a rather speculative scenario is here presented where the big rip can be circumvented by future advanced civilizations by utilizing sufficiently grown up wormholes and ringholes as time machines that shortcut the big-rip singularity.Comment: 11 pages, RevTex, to appear in Phys. Rev.

    Quantum time machine

    Get PDF
    The continuation of Misner space into the Euclidean region is seen to imply the topological restriction that the period of the closed spatial direction becomes time-dependent. This restriction results in a modified Lorentzian Misner space in which the renormalized stress-energy tensor for quantized complex massless scalar fields becomes regular everywhere, even on the chronology horizon. A quantum-mechanically stable time machine with just the sub-microscopic size may then be constructed out of the modified Misner space, for which the semiclassical Hawking's chronology protection conjecture is no longer an obstruction.Comment: 6 pages, RevTe

    Action of Singular Instantons of Hawking-Turok Type

    Full text link
    Using Kaluza-Klein technique we show that the singularity of Hawking-Turok type has a fixed point (bolt) contribution to the action in addition to the usual boundary contribution. Interestingly by adding this contribution we can obtain a simple expression for the total action which is feasible for both regular and singular instantons. Our result casts doubt on the constraint proposed by Turok in the recent calculation in which Vilenkin's instantons are regarded as a limit of certain constrained instantons.Comment: 14 pages, LaTe

    The IACOB project VIII. Searching for empirical signatures of binarity in fast-rotating O-type stars

    Full text link
    The empirical distribution of projected rotational velocities (vsini) in massive O-type stars is characterized by a dominant slow velocity component and a tail of fast rotators. Binary interaction has been proposed to play a dominant role in the formation of this tail. We perform a complete and homogeneous search for empirical signatures of binarity in a sample of 54 fast-rotating stars with the aim of evaluating this hypothesis. This working sample has been extracted from a larger sample of 415 Galactic O-type stars which covers the full range of vsini values. We use new and archival multi-epoch spectra in order to detect spectroscopic binary systems. We complement this information with Gaia proper motions and TESS photometric data to aid in the identification of runaway stars and eclipsing binaries, respectively. The identified fraction of single-lined spectroscopic binary (SB1) systems and apparently single stars among the fast-rotating sample is \sim18% and \sim70%, respectively. When comparing these percentages with those corresponding to the slow-rotating sample we find that our sample of fast rotators is characterized by a slightly larger percentage of SB1 systems (\sim18% vs. \sim13%) and a considerably smaller fraction of clearly detected SB2 systems (8% vs. 33%). Overall, there seems to be a clear deficit of spectroscopic binaries (SB1+SB2) among fast-rotating O-type stars (\sim26% vs. \sim46%). On the contrary, the fraction of runaway stars is significantly higher in the fast-rotating domain (\sim33-50%) than among those stars with vsini < 200 km/s. Lastly, almost 65% of the apparently single fast-rotating stars are runaways. Our empirical results seem to be in good agreement with the idea that the tail of fast-rotating O-type stars (with vsini > 200 km/s) is mostly populated by post-interaction binary products.Comment: 33 pages, 16 figures, accepted for publication in "Astronomy and Astrophysics

    Unified dark energy thermodynamics: varying w and the -1-crossing

    Full text link
    We investigate, in a unified and general way, the thermodynamic properties of dark energy with an arbitrary, varying equation-of-state parameter w(a). We find that all quantities are well defined and regular for every w(a), including at the -1-crossing, with the temperature being negative in the phantom regime (w(a)-1). The density and entropy are always positive while the chemical potential can be arbitrary. At the -1-crossing, both temperature and chemical potential are zero. The temperature negativity can only be interpreted in the quantum framework. The regular behavior of all quantities at the -1-crossing, leads to the conclusion that such a crossing does not correspond to a phase transition, but rather to a smooth cross-over.Comment: 5 pages, version published in Class. Quant. Gra

    The nuclear and extended mid-infrared emission of Seyfert galaxies

    Full text link
    We present subarcsecond resolution mid-infrared (MIR) images obtained with 8-10 m-class ground-based telescopes of a complete volume-limited (DL<40 Mpc) sample of 24 Seyfert galaxies selected from the Swift/BAT nine month catalog. We use those MIR images to study the nuclear and circumnuclear emission of the galaxies. Using different methods to classify the MIR morphologies on scales of ~400 pc, we find that the majority of the galaxies (75-83%) are extended or possibly extended and 17-25% are point-like. This extended emission is compact and it has low surface brightness compared with the nuclear emission, and it represents, on average, ~30% of the total MIR emission of the galaxies in the sample. We find that the galaxies whose circumnuclear MIR emission is dominated by star formation show more extended emission (650+-700 pc) than AGN-dominated systems (300+-100 pc). In general, the galaxies with point-like MIR morphologies are face-on or moderately inclined (b/a~0.4-1.0), and we do not find significant differences between the morphologies of Sy1 and Sy2. We used the nuclear and circumnuclear fluxes to investigate their correlation with different AGN and SF activity indicators. We find that the nuclear MIR emission (the inner ~70 pc) is strongly correlated with the X-ray emission (the harder the X-rays the better the correlation) and with the [O IV] lambda 25.89 micron emission line, indicating that it is AGN-dominated. We find the same results, although with more scatter, for the circumnuclear emission, which indicates that the AGN dominates the MIR emission in the inner ~400 pc of the galaxies, with some contribution from star formation.Comment: 27 pages, 12 figures, accepted by MNRA
    corecore