29 research outputs found

    Split or straight? Evidence of the effects of work schedules on workers’ well-being, time use, and productivity

    Get PDF
    About half of all employees in Spain are on a daytime split work schedule, i.e. they typically work for 5 h in the morning, take a 2-hour break at lunch time, and work for another 3 h in the afternoon/evening. This paper studies the effects of split work schedule on workers’ psychological well-being, daily time use, and productivity. Using cross-sectional data from the 2002 to 2003 Spanish Time Use Survey, I find that female split-shifters experience an increased feeling of being at least sometimes overwhelmed by tasks and not having enough time to complete them. On working days, a split work schedule is positively related to time spent on the job, sleeping, and eating and drinking, and negatively associated with time spent on housework, parental child care, and leisure activities. Most of the time-use effects are similar across the sexes, and only a few of the time reductions are partly made up on days off. I also find that the split work schedule is associated with lower hourly wages

    Analysis of variance in household financial portfolio choice: evidence from Spain

    Get PDF
    We analyse the determinants of the household financial portfolio allocation using an estimator and a variance decomposition that take into account the constrained nature of household portfolio allocations. We apply these methods to a large data set of financial assets. Results show that the main factors underlying household financial portfolio choice in Spain are age and net wealth. Among others, there is also evidence of sizeable effects associated with risk aversion, education, liquidity constraints and income, but very modest effects are associated with family size and having accounts in stand-alone internet banks. Implications for policy are also derived

    Informal “Seed” Systems and the Management of Gene Flow in Traditional Agroecosystems: The Case of Cassava in Cauca, Colombia

    Get PDF
    Our ability to manage gene flow within traditional agroecosystems and their repercussions requires understanding the biology of crops, including farming practices' role in crop ecology. That these practices' effects on crop population genetics have not been quantified bespeaks lack of an appropriate analytical framework. We use a model that construes seed-management practices as part of a crop's demography to describe the dynamics of cassava (Manihot esculenta Crantz) in Cauca, Colombia. We quantify several management practices for cassava—the first estimates of their kind for a vegetatively-propagated crop—describe their demographic repercussions, and compare them to those of maize, a sexually-reproduced grain crop. We discuss the implications for gene flow, the conservation of cassava diversity, and the biosafety of vegetatively-propagated crops in centers of diversity. Cassava populations are surprisingly open and dynamic: farmers exchange germplasm across localities, particularly improved varieties, and distribute it among neighbors at extremely high rates vis-à-vis maize. This implies that a large portion of cassava populations consists of non-local germplasm, often grown in mixed stands with local varieties. Gene flow from this germplasm into local seed banks and gene pools via pollen has been documented, but its extent remains uncertain. In sum, cassava's biology and vegetative propagation might facilitate pre-release confinement of genetically-modified varieties, as expected, but simultaneously contribute to their diffusion across traditional agroecosystems if released. Genetically-modified cassava is unlikely to displace landraces or compromise their diversity; but rapid diffusion of improved germplasm and subsequent incorporation into cassava landraces, seed banks or wild populations could obstruct the tracking and eradication of deleterious transgenes. Attempts to regulate traditional farming practices to reduce the risks could compromise cassava populations' adaptive potential and ultimately prove ineffectual

    Genome-Wide Association Study Implicates Chromosome 9q21.31 as a Susceptibility Locus for Asthma in Mexican Children

    Get PDF
    Many candidate genes have been studied for asthma, but replication has varied. Novel candidate genes have been identified for various complex diseases using genome-wide association studies (GWASs). We conducted a GWAS in 492 Mexican children with asthma, predominantly atopic by skin prick test, and their parents using the Illumina HumanHap 550 K BeadChip to identify novel genetic variation for childhood asthma. The 520,767 autosomal single nucleotide polymorphisms (SNPs) passing quality control were tested for association with childhood asthma using log-linear regression with a log-additive risk model. Eleven of the most significantly associated GWAS SNPs were tested for replication in an independent study of 177 Mexican case–parent trios with childhood-onset asthma and atopy using log-linear analysis. The chromosome 9q21.31 SNP rs2378383 (p = 7.10×10−6 in the GWAS), located upstream of transducin-like enhancer of split 4 (TLE4), gave a p-value of 0.03 and the same direction and magnitude of association in the replication study (combined p = 6.79×10−7). Ancestry analysis on chromosome 9q supported an inverse association between the rs2378383 minor allele (G) and childhood asthma. This work identifies chromosome 9q21.31 as a novel susceptibility locus for childhood asthma in Mexicans. Further, analysis of genome-wide expression data in 51 human tissues from the Novartis Research Foundation showed that median GWAS significance levels for SNPs in genes expressed in the lung differed most significantly from genes not expressed in the lung when compared to 50 other tissues, supporting the biological plausibility of our overall GWAS findings and the multigenic etiology of childhood asthma

    Identification of KIF3A as a Novel Candidate Gene for Childhood Asthma Using RNA Expression and Population Allelic Frequencies Differences

    Get PDF
    Asthma is a chronic inflammatory disease with a strong genetic predisposition. A major challenge for candidate gene association studies in asthma is the selection of biologically relevant genes.Using epithelial RNA expression arrays, HapMap allele frequency variation, and the literature, we identified six possible candidate susceptibility genes for childhood asthma including ADCY2, DNAH5, KIF3A, PDE4B, PLAU, SPRR2B. To evaluate these genes, we compared the genotypes of 194 predominantly tagging SNPs in 790 asthmatic, allergic and non-allergic children. We found that SNPs in all six genes were nominally associated with asthma (p<0.05) in our discovery cohort and in three independent cohorts at either the SNP or gene level (p<0.05). Further, we determined that our selection approach was superior to random selection of genes either differentially expressed in asthmatics compared to controls (p = 0.0049) or selected based on the literature alone (p = 0.0049), substantiating the validity of our gene selection approach. Importantly, we observed that 7 of 9 SNPs in the KIF3A gene more than doubled the odds of asthma (OR = 2.3, p<0.0001) and increased the odds of allergic disease (OR = 1.8, p<0.008). Our data indicate that KIF3A rs7737031 (T-allele) has an asthma population attributable risk of 18.5%. The association between KIF3A rs7737031 and asthma was validated in 3 independent populations, further substantiating the validity of our gene selection approach.Our study demonstrates that KIF3A, a member of the kinesin superfamily of microtubule associated motors that are important in the transport of protein complexes within cilia, is a novel candidate gene for childhood asthma. Polymorphisms in KIF3A may in part be responsible for poor mucus and/or allergen clearance from the airways. Furthermore, our study provides a promising framework for the identification and evaluation of novel candidate susceptibility genes

    Dissecting Complex Diseases in Complex Populations: Asthma in Latino Americans

    No full text
    Asthma is a common but complex respiratory ailment; current data indicate that interaction of genetic and environmental factors lead to its clinical expression. In the United States, asthma prevalence, morbidity, and mortality vary widely among different Latino ethnic groups. The prevalence of asthma is highest in Puerto Ricans, intermediate in Dominicans and Cubans, and lowest in Mexicans and Central Americans. Independently, known socioeconomic, environmental, and genetic differences do not fully account for this observation. One potential explanation is that there may be unique and ethnic-specific gene–environment interactions that can differentially modify risk for asthma in Latino ethnic groups. These gene–environment interactions can be tested using genetic ancestry as a surrogate for genetic risk factors. Latinos are admixed and share varying proportions of African, Native American, and European ancestry. Most Latinos are unaware of their precise ancestry and report their ancestry based on the national origin of their family and their physical appearance. The unavailability of precise ancestry and the genetic complexity among Latinos may complicate asthma research studies in this population. On the other hand, precisely because of this rich mixture of ancestry, Latinos present a unique opportunity to disentangle the clinical, social, environmental, and genetic underpinnings of population differences in asthma prevalence, severity, and bronchodilator drug responsiveness

    Latino Populations: A Unique Opportunity for the Study of Race, Genetics, and Social Environment in Epidemiological Research

    No full text
    Latinos are the largest minority population in the United States. Although usually classified as a single ethnic group by researchers, Latinos are heterogeneous from cultural, socioeconomic, and genetic perspectives. From a cultural and social perspective, Latinos represent a wide variety of national origins and ethnic and cultural groups, with a full spectrum of social class. From a genetic perspective, Latinos are descended from indigenous American, European, and African populations. We review the historical events that led to the formation of contemporary Latino populations and use results from recent genetic and clinical studies to illustrate the unique opportunity Latino groups offer for studying the interaction between racial, genetic, and environmental contributions to disease occurrence and drug response
    corecore