104 research outputs found

    A nuclear orthologue of the dNTP triphosphohydrolase SAMHD1 controls dNTP homeostasis and genomic stability in Trypanosoma brucei

    Get PDF
    Maintenance of dNTPs pools in Trypanosoma brucei is dependent on both biosynthetic and degradation pathways that together ensure correct cellular homeostasis throughout the cell cycle which is essential for the preservation of genomic stability. Both the salvage and de novo pathways participate in the provision of pyrimidine dNTPs while purine dNTPs are made available solely through salvage. In order to identify enzymes involved in degradation here we have characterized the role of a trypanosomal SAMHD1 orthologue denominated TbHD82. Our results show that TbHD82 is a nuclear enzyme in both procyclic and bloodstream forms of T. brucei. Knockout forms exhibit a hypermutator phenotype, cell cycle perturbations and an activation of the DNA repair response. Furthermore, dNTP quantification of TbHD82 null mutant cells revealed perturbations in nucleotide metabolism with a substantial accumulation of dATP, dCTP and dTTP. We propose that this HD domain-containing protein present in kinetoplastids plays an essential role acting as a sentinel of genomic fidelity by modulating the unnecessary and detrimental accumulation of dNTPs

    New Compounds with Bioisosteric Replacement of Classic Choline Kinase Inhibitors Show Potent Antiplasmodial Activity

    Get PDF
    This research was funded by Convocatoria 2019 Proyectos de I + D + i - RTI Tipo B “Ministerio de Ciencia e Innovación” grant number PID2019–109294RB-I00, University of Granada, Cei-BioticProject grant number CEI2013-MP-1, the Instituto de Salud Carlos III Subdirección General de Redes y Centros de Investigación Cooperativa-Red de Investigación Cooperativa en Enfermedades Tropicales (RICET: RD16/0027/0014), the Plan Nacional (SAF PID2019-109623RB-I002016-79957-R) and the Junta de Andalucía (BIO-199).Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3390/pharmaceutics13111842/s1, Figure S1. Pf CKIC50 Curves Inhibition of Pf CK. Figure S2. IC50Curves. Figure S3. Spectra.In the fight against Malaria, new strategies need to be developed to avoid resistance of the parasite to pharmaceutics and other prevention barriers. Recently, a Host Directed Therapy approach based on the suppression of the starting materials uptake from the host by the parasite has provided excellent results. In this article, we propose the synthesis of bioisosteric compounds that are capable of inhibiting Plasmodium falciparum Choline Kinase and therefore to reduce choline uptake, which is essential for the development of the parasite. Of the 41 bioisosteric compounds reported herein, none showed any influence of the linker on the antimalarial and enzyme inhibitory activity, whereas an effect of the type of cationic heads used could be observed. SARs determined that the thienopyrimidine substituted in 4 by a pyrrolidine is the best scaffold, independently of the chosen linker. The decrease in lipophilicity seems to improve the antimalarial activity but to cause an opposite effect on the inhibition of the enzyme. While potent compounds with similar good inhibitory values have been related to the proposed mechanism of action, some of them still show discrepancies and further studies are needed to determine their specific molecular target.Ministerio de Ciencia e Innovación PID2019–109294RB-I00University of Granada CEI2013-MP-1Plan Nacional (SAF PID2019-109623RB-I002016-79957-R)Junta de Andalucía (BIO-199)Instituto de Salud Carlos III (RICET: RD16/0027/0014

    Strasseriolides display in vitro and in vivo activity against trypanosomal parasites and cause morphological and size defects in Trypanosoma cruzi

    Get PDF
    Neglected diseases caused by kinetoplastid parasites are a health burden in tropical and subtropical countries. The need to create safe and effective medicines to improve treatment remains a priority. Microbial natural products are a source of chemical diversity that provides a valuable approach for identifying new drug candidates. We recently reported the discovery and bioassay-guided isolation of a novel family of macrolides with antiplasmodial activity. The novel family of four potent antimalarial macrolides, strasseriolides A-D, was isolated from cultures of Strasseria geniculata CF-247251, a fungal strain obtained from plant tissues. In the present study, we analyze these strasseriolides for activity against kinetoplastid protozoan parasites, namely, Trypanosoma brucei brucei, Leishmania donovani and Trypanosoma cruzi. Compounds exhibited mostly low activities against T. b. brucei, yet notable growth inhibition and selectivity were observed for strasseriolides C and D in the clinically relevant intracellular T. cruzi and L. donovani amastigotes with EC50 values in the low micromolar range. Compound C is fast-acting and active against both intracellular and trypomastigote forms of T. cruzi. While cell cycle defects were not identified, prominent morphological changes were visualized by differential interference contrast microscopy and smaller and rounded parasites were visualized upon exposure to strasseriolide C. Moreover, compound C lowers parasitaemia in vivo in acute models of infection of Chagas disease. Hence, strasseriolide C is a novel natural product active against different forms of T. cruzi in vitro and in vivo. The study provides an avenue for blocking infection of new cells, a strategy that could additionally contribute to avoid treatment failure.This work was funded by the Instituto de Salud Carlos III Subdirección General de Redes y Centros de Investigación Cooperativa-Red de Investigación Cooperativa en Enfermedades Tropicales (RICET) https://www.isciii.es/Paginas/Inicio.aspx - https://www.ricet.es/proyectos: RD16/0027/0014 (DGP), RD16/0027/0015 (FV), and RD12/0018/0005 (FV); by the MCIN/AEI/10.13039/501100011033 https://www.aei.gob.es/ayudas-concedidas/buscador-ayudas-concedidas: PID2019-109623RB-I00 (DGP); by the MCIN/AEI/10.13039/501100011033 and FEDER Una manera de hacer Europa https://www.aei.gob.es/fondos-europeos/fondos-feder: 2016-79957-R (DGP); and by the Junta de Andalucía https://www.juntadeandalucia.es/organismos/universidadinvestigacioneinnovacion/servicios/procedimientos.html: BIO-199 (LMRP). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewe

    Preclinical evaluation of strasseriolides A–D, potent antiplasmodial macrolides isolated from Strasseria geniculata CF-247,251.

    Get PDF
    Background: Malaria is a global health problem for which novel therapeutic compounds are needed. To this end, a recently published novel family of antiplasmodial macrolides, strasseriolides A–D, was herein subjected to in vivo efficacy studies and preclinical evaluation in order to identify the most promising candidate(s) for further development. Methods: Preclinical evaluation of strasseriolides A–D was performed by MTT-based cytotoxicity assay in THLE-2 (CRL-2706) liver cells, cardiotoxicity screening using the FluxOR™ potassium assay in hERG expressed HEK cells, LC–MS-based analysis of drug-drug interaction involving CYP3A4, CYP2D6 and CYP2C9 isoforms inhibition and metabolic stability assays in human liver microsomes. Mice in vivo toxicity studies were also accomplished by i.v. administration of the compounds (vehicle: 0.5% HPMC, 0.5% Tween 80, 0.5% Benzyl alcohol) in mice at 25 mg/kg dosage. Plasma were prepared from mice blood samples obtained at different time points (over a 24-h period), and analysed by LC-MS to quantify compounds. The most promising compounds, strasseriolides C and D, were subjected to a preliminary in vivo efficacy study in which transgenic GFP-luciferase expressing Plasmodium berghei strain ANKA-infected Swiss Webster female mice (n = 4–5) were treated 48 h post-infection with an i.p. dosage of strasseriolide C at 50 mg/kg and strasseriolide D at 22 mg/kg for four days after which luciferase activity was quantified on day 5 in an IVIS Lumina II imager. Results: Strasseriolides A–D showed no cytotoxicity, no carditoxicity and no drug-drug interaction problems in vitro with varying intrinsic clearance (CLint). Only strasseriolide B was highly toxic to mice in vivo (even at 1 mg/kg i.v. dosage) and, therefore, discontinued in further in vivo studies. Strasseriolide D showed statistically significant activity in vivo giving rise to lower parasitaemia levels (70% lower) compared to the controls treated with vehicle. Conclusions: Animal efficacy and preclinical evaluation of the recently discovered potent antiplasmodial macrolides, strasseriolides A–D, led to the identification of strasseriolide D as the most promising compound for further development. Future studies dealing on structure optimization, formulation and establishment of optimal in vivo dosage explorations of this novel compound class could enhance their clinical potency and allow for progress to later stages of the developmental pipeline.This work was funded by the European Commission FP7 Marie Curie Initial Training Network “ParaMet” [grant agreement 290080], the Instituto de Salud Carlos III Subdirección General de Redes y Centros de Investigación Cooperativa-Red de Investigación Cooperativa en Enfermedades Tropicales (RICET: RD16/0027/0014, RD16/0027/0015, and RD12/0018/0005), the Plan Nacional (PID2019-109623RB-100 and SAF 2016-79957-R) and by the Junta de Andalucía (BIO-199). The polarimeter, HPLC, IR, NMR equipment, and plate reader used in this work were purchased via grants for scientific and technological infrastructures from the Ministerio de Ciencia e Innovación [Grants Nos. PCT- 010000-2010-4 (NMR), INP-2011-0016-PCT-010000 ACT6 (polarimeter, HPLC, and IR), and PCT-01000-ACT7, 2011-13 (plate reader)]

    New Compounds with Bioisosteric Replacement of Classic Choline Kinase Inhibitors Show Potent Antiplasmodial Activity

    Get PDF
    In the fight against Malaria, new strategies need to be developed to avoid resistance of the parasite to pharmaceutics and other prevention barriers. Recently, a Host Directed Therapy approach based on the suppression of the starting materials uptake from the host by the parasite has provided excellent results. In this article, we propose the synthesis of bioisosteric compounds that are capable of inhibiting Plasmodium falciparum Choline Kinase and therefore to reduce choline uptake, which is essential for the development of the parasite. Of the 41 bioisosteric compounds reported herein, none showed any influence of the linker on the antimalarial and enzyme inhibitory activity, whereas an effect of the type of cationic heads used could be observed. SARs determined that the thienopyrimidine substituted in 4 by a pyrrolidine is the best scaffold, independently of the chosen linker. The decrease in lipophilicity seems to improve the antimalarial activity but to cause an opposite effect on the inhibition of the enzyme. While potent compounds with similar good inhibitory values have been related to the proposed mechanism of action, some of them still show discrepancies and further studies are needed to determine their specific molecular target

    Preclinical evaluation of strasseriolides A–D, potent antiplasmodial macrolides isolated from Strasseria geniculata CF-247,251.

    Get PDF
    Background: Malaria is a global health problem for which novel therapeutic compounds are needed. To this end, a recently published novel family of antiplasmodial macrolides, strasseriolides A–D, was herein subjected to in vivo efficacy studies and preclinical evaluation in order to identify the most promising candidate(s) for further development. Methods: Preclinical evaluation of strasseriolides A–D was performed by MTT-based cytotoxicity assay in THLE-2 (CRL-2706) liver cells, cardiotoxicity screening using the FluxOR™ potassium assay in hERG expressed HEK cells, LC–MS-based analysis of drug-drug interaction involving CYP3A4, CYP2D6 and CYP2C9 isoforms inhibition and metabolic stability assays in human liver microsomes. Mice in vivo toxicity studies were also accomplished by i.v. administration of the compounds (vehicle: 0.5% HPMC, 0.5% Tween 80, 0.5% Benzyl alcohol) in mice at 25 mg/kg dosage. Plasma were prepared from mice blood samples obtained at different time points (over a 24-h period), and analysed by LC-MS to quantify compounds. The most promising compounds, strasseriolides C and D, were subjected to a preliminary in vivo efficacy study in which transgenic GFP-luciferase expressing Plasmodium berghei strain ANKA-infected Swiss Webster female mice (n = 4–5) were treated 48 h post-infection with an i.p. dosage of strasseriolide C at 50 mg/kg and strasseriolide D at 22 mg/kg for four days after which luciferase activity was quantified on day 5 in an IVIS Lumina II imager. Results: Strasseriolides A–D showed no cytotoxicity, no carditoxicity and no drug-drug interaction problems in vitro with varying intrinsic clearance (CLint). Only strasseriolide B was highly toxic to mice in vivo (even at 1 mg/kg i.v. dosage) and, therefore, discontinued in further in vivo studies. Strasseriolide D showed statistically significant activity in vivo giving rise to lower parasitaemia levels (70% lower) compared to the controls treated with vehicle. Conclusions: Animal efficacy and preclinical evaluation of the recently discovered potent antiplasmodial macrolides, strasseriolides A–D, led to the identification of strasseriolide D as the most promising compound for further development. Future studies dealing on structure optimization, formulation and establishment of optimal in vivo dosage explorations of this novel compound class could enhance their clinical potency and allow for progress to later stages of the developmental pipeline.This work was funded by the European Commission FP7 Marie Curie Initial Training Network “ParaMet” [grant agreement 290080], the Instituto de Salud Carlos III Subdirección General de Redes y Centros de Investigación Cooperativa-Red de Investigación Cooperativa en Enfermedades Tropicales (RICET: RD16/0027/0014, RD16/0027/0015, and RD12/0018/0005), the Plan Nacional (PID2019-109623RB-100 and SAF 2016-79957-R) and by the Junta de Andalucía (BIO-199). The polarimeter, HPLC, IR, NMR equipment, and plate reader used in this work were purchased via grants for scientific and technological infrastructures from the Ministerio de Ciencia e Innovación [Grants Nos. PCT- 010000-2010-4 (NMR), INP-2011-0016-PCT-010000 ACT6 (polarimeter, HPLC, and IR), and PCT-01000-ACT7, 2011-13 (plate reader)].Peer reviewe

    Lead Optimization of 3,5-Disubstituted-7-Azaindoles for the Treatment of Human African Trypanosomiasis.

    Get PDF
    Neglected tropical diseases such as human African trypanosomiasis (HAT) are prevalent primarily in tropical climates and among populations living in poverty. Historically, the lack of economic incentive to develop new treatments for these diseases has meant that existing therapeutics have serious shortcomings in terms of safety, efficacy, and administration, and better therapeutics are needed. We now report a series of 3,5-disubstituted-7-azaindoles identified as growth inhibitors of Trypanosoma brucei, the parasite that causes HAT, through a high-throughput screen. We describe the hit-to-lead optimization of this series and the development and preclinical investigation of 29d, a potent antitrypanosomal compound with promising pharmacokinetic (PK) parameters. This compound was ultimately not progressed beyond in vivo PK studies due to its inability to penetrate the blood-brain barrier (BBB), critical for stage 2 HAT treatments.The authors acknowledge funding from the National Institute of Allergy and Infectious Diseases (M.P.P. and M.N., R01AI114685; M.P.P., 1R21AI127594, R01AI124046; C.R.C., R21AI126296; https://www.niaid.nih.gov/), the Spanish Ministerio de Economí a, Industria y Competitividad (M.N., SAF2015-71444-P; D.G.-P., SAF2016-79957-R; http://www.mineco.gob.es), Subdireccion General de Redes ́ y Centros de Investigacion Cooperativa (RICET, https://www.ricet.es/) (M.N., RD16/0027/0019; D.G.P., RD16/ 0027/0014), and RTI2018-097210-B-I00 (MINCIU-FEDER) to F.G. An ACS MEDI Predoctoral Fellowship for D.M.K. is gratefully acknowledged, as is support from the National Science Foundation for K.F. (CHE-1262734). We thank AstraZeneca, Charles River Laboratories, and GlaxoSmithKline for the provision of the in vitro ADME and physicochemical properties data. The use of JChem/ChemAxon software is acknowledged

    Validation of Plasmodium falciparum dUTPase as the target of 5'-tritylated deoxyuridine analogues with anti-malarial activity

    Get PDF
    BACKGROUND: Malaria remains as a major global problem, being one of the infectious diseases that engender highest mortality across the world. Due to the appearance of resistance and the lack of an effective vaccine, the search of novel anti-malarials is required. Deoxyuridine 5'-triphosphate nucleotido-hydrolase (dUTPase) is responsible for the hydrolysis of dUTP to dUMP within the parasite and has been proposed as an essential step in pyrimidine metabolism by providing dUMP for thymidylate biosynthesis. In this work, efforts to validate dUTPase as a drug target in Plasmodium falciparum are reported. METHODS: To investigate the role of PfdUTPase in cell survival different strategies to generate knockout mutants were used. For validation of PfdUTPase as the intracellular target of four inhibitors of the enzyme, mutants overexpressing PfdUTPase and HsdUTPase were created and the IC50 for each cell line with each compound was determined. The effect of these compounds on dUTP and dTTP levels from P. falciparum was measured using a DNA polymerase assay. Detailed localization studies by indirect immunofluorescence microscopy and live cell imaging were also performed using a cell line overexpressing a Pfdut-GFP fusion protein. RESULTS:Different attempts of disruption of the dut gene of P. falciparum were unsuccessful while a 3' replacement construct could recombine correctly in the locus suggesting that the enzyme is essential. The four 5'-tritylated deoxyuridine analogues described are potent inhibitors of the P. falciparum dUTPase and exhibit antiplasmodial activity. Overexpression of the Plasmodium and human enzymes conferred resistance against selective compounds, providing chemical validation of the target and confirming that indeed dUTPase inhibition is involved in anti-malarial activity. In addition, incubation with these inhibitors was associated with a depletion of the dTTP pool corroborating the central role of dUTPase in dTTP synthesis. PfdUTPase is mainly localized in the cytosol. CONCLUSION: These results strongly confirm the pivotal and essential role of dUTPase in pyrimidine biosynthesis of P. falciparum intraerythrocytic stages
    corecore