34 research outputs found

    Molecular Characterization of the Glycated Plasma Membrane Calcium Pump

    Get PDF
    We have previously demonstrated (Diabetes 39:707–711, 1990) that in vitro glycation of the red cell Ca2+ pump diminishes the Ca2+-ATPase activity of the enzyme up to 50%. Such effect is due to the reaction of glucose with lysine residues of the Ca2+ pump (Biochem. J. 293:369–375, 1993). The aim of this work was to determine whether the effect of glucose is due to a full inactivation of a fraction of the total population of Ca2+ pump, or to a partial inactivation of all the molecules. Glycation decreased the Vmax; for the ATPase activity leaving unaffected the apparent affinities for Ca2+, calmodulin or ATP. The apparent turnover was identical in both, the glycated and the native enzyme. Glycation decreased the Vmax; for the ATP-dependent but not for the calmodulin-activated phosphatase activities. Concomitantly with the inhibition, up to 6.5% of the lysine residues were randomly glycated. The probabilistic analysis of the relation between the enzyme activity and the fraction of nonmodified residues indicates that only one Lys residue is responsible for the inhibition. We suggest that glucose decreases the Ca2+-ATPase activity by reacting with one essential Lys residue probably located in the vicinity of the catalytic site, which results in the full inactivation of the enzyme. Thus, Ca2+-ATPase activity measured in erythrocyte membranes or purified enzyme preparations preincubated with glucose depends on the remaining enzyme molecules in which the essential Lys residue stays unglycated.Centro de Endocrinología Experimental y Aplicad

    A Two-Stage Model for Lipid Modulation of the Activity of Integral Membrane Proteins

    Get PDF
    Lipid-protein interactions play an essential role in the regulation of biological function of integral membrane proteins; however, the underlying molecular mechanisms are not fully understood. Here we explore the modulation by phospholipids of the enzymatic activity of the plasma membrane calcium pump reconstituted in detergent-phospholipid mixed micelles of variable composition. The presence of increasing quantities of phospholipids in the micelles produced a cooperative increase in the ATPase activity of the enzyme. This activation effect was reversible and depended on the phospholipid/detergent ratio and not on the total lipid concentration. Enzyme activation was accompanied by a small structural change at the transmembrane domain reported by 1-aniline-8-naphtalenesulfonate fluorescence. In addition, the composition of the amphipilic environment sensed by the protein was evaluated by measuring the relative affinity of the assayed phospholipid for the transmembrane surface of the protein. The obtained results allow us to postulate a two-stage mechanistic model explaining the modulation of protein activity based on the exchange among non-structural amphiphiles at the hydrophobic transmembrane surface, and a lipid-induced conformational change. The model allowed to obtain a cooperativity coefficient reporting on the efficiency of the transduction step between lipid adsorption and catalytic site activation. This model can be easily applied to other phospholipid/detergent mixtures as well to other membrane proteins. The systematic quantitative evaluation of these systems could contribute to gain insight into the structure-activity relationships between proteins and lipids in biological membranes
    corecore