40 research outputs found
Reviewing the use of resilience concepts in forest sciences
Purpose of the review Resilience is a key concept to deal with an uncertain future in forestry. In recent years, it has received increasing attention from both research and practice. However, a common understanding of what resilience means in a forestry context, and how to operationalise it is lacking. Here, we conducted a systematic review of the recent forest science literature on resilience in the forestry context, synthesising how resilience is defined and assessed.
Recent findings Based on a detailed review of 255 studies, we analysed how the concepts of engineering resilience, ecological resilience, and social-ecological resilience are used in forest sciences. A clear majority of the studies applied the concept of engineering resilience, quantifying resilience as the recovery time after a disturbance. The two most used indicators for engineering resilience were basal area increment and vegetation cover, whereas ecological
resilience studies frequently focus on vegetation cover and tree density. In contrast, important social-ecological resilience indicators used in the literature are socio-economic diversity and stock of natural resources. In the context of global change, we expected an increase in studies adopting the more holistic social-ecological resilience concept, but this was not the observed trend. Summary Our analysis points to the nestedness of these three resilience concepts, suggesting that they are complementary rather than contradictory. It also means that the variety of resilience approaches does not need to be an obstacle for operationalisation of the concept. We provide guidance for choosing the most suitable resilience concept and indicators based on the management, disturbance and application context
Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults
Background Underweight and obesity are associated with adverse health outcomes throughout the life course. We estimated the individual and combined prevalence of underweight or thinness and obesity, and their changes, from 1990 to 2022 for adults and school-aged children and adolescents in 200 countries and territories. Methods We used data from 3663 population-based studies with 222 million participants that measured height and weight in representative samples of the general population. We used a Bayesian hierarchical model to estimate trends in the prevalence of different BMI categories, separately for adults (age ≥20 years) and school-aged children and adolescents (age 5–19 years), from 1990 to 2022 for 200 countries and territories. For adults, we report the individual and combined prevalence of underweight (BMI 2 SD above the median). Findings From 1990 to 2022, the combined prevalence of underweight and obesity in adults decreased in 11 countries (6%) for women and 17 (9%) for men with a posterior probability of at least 0·80 that the observed changes were true decreases. The combined prevalence increased in 162 countries (81%) for women and 140 countries (70%) for men with a posterior probability of at least 0·80. In 2022, the combined prevalence of underweight and obesity was highest in island nations in the Caribbean and Polynesia and Micronesia, and countries in the Middle East and north Africa. Obesity prevalence was higher than underweight with posterior probability of at least 0·80 in 177 countries (89%) for women and 145 (73%) for men in 2022, whereas the converse was true in 16 countries (8%) for women, and 39 (20%) for men. From 1990 to 2022, the combined prevalence of thinness and obesity decreased among girls in five countries (3%) and among boys in 15 countries (8%) with a posterior probability of at least 0·80, and increased among girls in 140 countries (70%) and boys in 137 countries (69%) with a posterior probability of at least 0·80. The countries with highest combined prevalence of thinness and obesity in school-aged children and adolescents in 2022 were in Polynesia and Micronesia and the Caribbean for both sexes, and Chile and Qatar for boys. Combined prevalence was also high in some countries in south Asia, such as India and Pakistan, where thinness remained prevalent despite having declined. In 2022, obesity in school-aged children and adolescents was more prevalent than thinness with a posterior probability of at least 0·80 among girls in 133 countries (67%) and boys in 125 countries (63%), whereas the converse was true in 35 countries (18%) and 42 countries (21%), respectively. In almost all countries for both adults and school-aged children and adolescents, the increases in double burden were driven by increases in obesity, and decreases in double burden by declining https://researchonline.ljmu.ac.uk/images/research_banner_face_lab_290.jpgunderweight or thinness. Interpretation The combined burden of underweight and obesity has increased in most countries, driven by an increase in obesity, while underweight and thinness remain prevalent in south Asia and parts of Africa. A healthy nutrition transition that enhances access to nutritious foods is needed to address the remaining burden of underweight while curbing and reversing the increase in obesity
Diminishing benefits of urban living for children and adolescents’ growth and development
AbstractOptimal growth and development in childhood and adolescence is crucial for lifelong health and well-being1–6. Here we used data from 2,325 population-based studies, with measurements of height and weight from 71 million participants, to report the height and body-mass index (BMI) of children and adolescents aged 5–19 years on the basis of rural and urban place of residence in 200 countries and territories from 1990 to 2020. In 1990, children and adolescents residing in cities were taller than their rural counterparts in all but a few high-income countries. By 2020, the urban height advantage became smaller in most countries, and in many high-income western countries it reversed into a small urban-based disadvantage. The exception was for boys in most countries in sub-Saharan Africa and in some countries in Oceania, south Asia and the region of central Asia, Middle East and north Africa. In these countries, successive cohorts of boys from rural places either did not gain height or possibly became shorter, and hence fell further behind their urban peers. The difference between the age-standardized mean BMI of children in urban and rural areas was <1.1 kg m–2 in the vast majority of countries. Within this small range, BMI increased slightly more in cities than in rural areas, except in south Asia, sub-Saharan Africa and some countries in central and eastern Europe. Our results show that in much of the world, the growth and developmental advantages of living in cities have diminished in the twenty-first century, whereas in much of sub-Saharan Africa they have amplified.</jats:p
Effect of southern climate modes and variations in river discharge on lake surface area in Patagonia
Landscapes and Geology of Patagonia: An Introduction to the Land of Reptiles
The purpose of this chapter is to summarize the geological-geomorphologicalregions of Patagonia with a general characterization of the maingeomorphological units. A review of studies on geology, stratigraphic, main geologiclandmarks, geological history, and geological resources will be brieflydescribed. This review was performed on the base of geological province concept,including a stratigraphic-morphostructural criteria and a description of majorendogenous and exogenous processes responsible for the formation of landscapeunits. In this chapter these geological-geomorphological regions include Chile andArgentina and were grouped as: (1) Coastal Cordillera and Central Valley (Chile),(2) Southern Andes Cordillera, (3) Mountain Sector of the Neuquén Embayment,(4) Northern Patagonian Tablelands, (5) The North Patagonian Broken Foreland andSomún Curá Massif, (6) Central Patagonian Tablelands, (7) Deseado Massif, (8)Southern Patagonian Tableland, and (9) Islas Malvinas Plateau.Fil: Bouza, Pablo Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico para el Estudio de los Ecosistemas Continentales; ArgentinaFil: Bilmes, Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Geología y Paleontología; Argentin
New toxodontid (Notoungulata) from the Early Miocene of Mendoza, Argentina
We describe a new toxodontid species, Nesodon taweretus sp. nov., from the Aisol Formation in Mendoza Province, central-west Argentina. Nesodon is a frequently found Toxodontidae, member of the Notoungulata, an extinct endemic group of Cenozoic South American mammals that are ecologically similar to current hoofed ungulates. The holotype of N. taweretus sp. nov. is a skull, and we tentatively assign some mandibular fragments and postcranial bones. N. taweretus sp. nov. differs from the other Nesodon species in several cranial and dental features, and close comparisons were made with the Patagonian Nesodon imbricatus, common in the Santa Cruz Formation (Santacrucian Age, Early Miocene). The material is of a similar size to N. imbricatus, with a body mass estimation of about 550 kg. The phylogenetic analysis groups N. taweretus sp. nov. with other species of Nesodon. The absolute age of the Aisol Formation has been established at ca 19.480 ± 0.025 Ma (Burdigalian; Early Miocene) by means of U–Pb zircon dating. The vertebrate association is encompassed by the Santacrucian Age. Latitudinal separation between Mendoza and Patagonia in the south would have favored taxonomic differences, as reflected in the species of Nesodon.
=
Wir beschreiben eine neue Art der Toxodontiden, Nesodon taweretus sp. nov., aus der Aisol-Formation in der Provinz Mendoza, im Zentralwesten von Argentinien. Nesodon ist ein häufig vorkommendes Taxon der Toxodontidae, die zu den Notoungulaten, einer ausgestorbenen Gruppe von endemischen Säugetieren des Känozoikums in Südamerika, gehören und den rezenten gehuften Ungulata ökologisch ähnlich waren. Der Holotyp von N. taweretus sp. nov. ist ein Schädel, dem wir vorläufig einige Unterkieferfragmente und postkraniale Knochen zuweisen. N. taweretus sp. nov. unterscheidet sich von den anderen Nesodon-Arten in mehreren Merkmalen des Schädels und der Bezahnung. Enge Vergleiche wurden mit dem aus Patagonien stammenden und in der Santa-Cruz-Formation (Santacruzium, frühes Miozän) verbreiteten Nesodon imbricatus gemacht. Das Material ist von ähnlicher Grösse wie N. imbricatus, Schätzungen der Körpermasse ist etwa 550 kg. Die phylogenetische Analyse gruppiert N. taweretus sp. nov. mit anderen Arten von Nesodon. Das absolute Alter der Aisol-Formation wurde mittels der U–Pb Zirkondatierung auf etwa 19.480 ± 0.025 Ma (Burdigalium, Unteres Miozäns) gesetzt. Die Wirbeltiervergesellschaftung in das Santacruzium eingeschlossen worden. Latitudinale Trennung zwischen Mendoza und Patagonien im Süden hätte taxonomischen Unterschiede begünstigt, wie das anhand der Arten von Nesodon widergegeben ist