4,628 research outputs found
Biomechanical analysis of a cranial Patient Specific Implant on the interface with the bone using the Finite Element Method
- New advance technologies based on reverse engineering , design and additive
manufacturing, have expanded design capabilities for biomedical applications to
include Patient Specific Implants (PSI). This change in design paradigms needs
advanced tools to assess the mechanical performance of the product, and
simulate the impact on the patient. In this work, we perform a structural
analysis on the interface of a cranial PSI under static loading conditions.
Based on those simulations, we have identified the regions with high stress and
strain and checked the failure criteria both in the implant and the skull. We
evaluate the quality of the design of the implant and determine their response
given different materials, in order to ensure optimality of the final product
to be manufactured
Tensorial perturbations in the bulk of inflating brane worlds
In this paper we consider the stability of some inflating brane-world models
in quantum cosmology. It is shown that whereas the singular model based on the
construction of inflating branes from Euclidean five-dimensional anti-de Sitter
space is unstable to tensorial cosmological perturbations in the bulk, the
nonsingular model which uses a five-dimensional asymptotically anti-de Sitter
wormhole to construct the inflating branes is stable to these perturbations.Comment: 4 pages, RevTex, to appear in Phys. Rev.
Spectropolarimetric analysis of an active region filament. I. Magnetic and dynamical properties from single component inversions
The determination of the magnetic filed vector in solar filaments is possible
by interpreting the Hanle and Zeeman effects in suitable chromospheric spectral
lines like those of the He I multiplet at 10830 A. We study the vector magnetic
field of an active region filament (NOAA 12087). Spectropolarimetric data of
this active region was acquired with the GRIS instrument at the GREGOR
telescope and studied simultaneously in the chromosphere with the He I 10830 A
multiplet and in the photosphere with the Si I 10827 A line. As it is usual
from previous studies, only a single component model is used to infer the
magnetic properties of the filament. The results are put into a solar context
with the help of the Solar Dynamic Observatory images. Some results clearly
point out that a more complex inversion had to be done. Firstly, the Stokes
map of He I does not show any clear signature of the presence of the filament.
Secondly, the local azimuth map follows the same pattern than Stokes as if
the polarity of Stokes were conditioning the inference to very different
magnetic field even with similar linear polarization signals. This indication
suggests that the Stokes could be dominated by the below magnetic field
coming from the active region, and not, from the filament itself. Those and
more evidences will be analyzed in depth and a more complex inversion will be
attempted in the second part of this series.Comment: 18 pages, 19 figures, accepted for publication in A&
Anti-de Sitter wormhole kink
The metric describing a given finite sector of a four-dimensional
asymptotically anti-de Sitter wormhole can be transformed into the metric of
the time constant sections of a Tangherlini black hole in a five-dimensional
anti-de Sitter spacetime when one allows light cones to tip over on the
hypersurfaces according to the conservation laws of an one-kink. The resulting
kinked metric can be maximally extended, giving then rise to an instantonic
structure on the euclidean continuation of both the Tangherlini time and the
radial coordinate. In the semiclassical regime, this kink is related to the
existence of closed timelike curves.Comment: 10 pages, to appear in IJMP
Wormholes and Ringholes in a Dark-Energy Universe
The effects that the present accelerating expansion of the universe has on
the size and shape of Lorentzian wormholes and ringholes are considered. It is
shown that, quite similarly to how it occurs for inflating wormholes, relative
to the initial embedding-space coordinate system, whereas the shape of the
considered holes is always preserved with time, their size is driven by the
expansion to increase by a factor which is proportional to the scale factor of
the universe. In the case that dark energy is phantom energy, which is not
excluded by present constraints on the dark-energy equation of state, that size
increase with time becomes quite more remarkable, and a rather speculative
scenario is here presented where the big rip can be circumvented by future
advanced civilizations by utilizing sufficiently grown up wormholes and
ringholes as time machines that shortcut the big-rip singularity.Comment: 11 pages, RevTex, to appear in Phys. Rev.
On the warp drive space-time
In this paper the problem of the quantum stability of the two-dimensional
warp drive spacetime moving with an apparent faster than light velocity is
considered. We regard as a maximum extension beyond the event horizon of that
spacetime its embedding in a three-dimensional Minkowskian space with the
topology of the corresponding Misner space. It is obtained that the interior of
the spaceship bubble becomes then a multiply connected nonchronal region with
closed timelike curves and that the most natural vacuum allows quantum
fluctuations which do not induce any divergent behaviour of the re-normalized
stress-energy tensor, even on the event (Cauchy) chronology horizon. In such a
case, the horizon encloses closed timelike curves only at scales close to the
Planck length, so that the warp drive satisfies the Ford's negative energy-time
inequality. Also found is a connection between the superluminal two-dimensional
warp drive space and two-dimensional gravitational kinks. This connection
allows us to generalize the considered Alcubierre metric to a standard,
nonstatic metric which is only describable on two different coordinate patchesComment: 7 pages, minor comment on chronology protection added, RevTex, to
appear in Phys. Rev.
Accretion and photodesorption of CO ice as a function of the incident angle of deposition
Non-thermal desorption of inter- and circum-stellar ice mantles on dust
grains, in particular ultraviolet photon-induced desorption, has gained
importance in recent years. These processes may account for the observed gas
phase abundances of molecules like CO toward cold interstellar clouds. Ice
mantle growth results from gas molecules impinging on the dust from all
directions and incidence angles. Nevertheless, the effect of the incident angle
for deposition on ice photo-desorption rate has not been studied. This work
explores the impact on the accretion and photodesorption rates of the incidence
angle of CO gas molecules with the cold surface during deposition of a CO ice
layer. Infrared spectroscopy monitored CO ice upon deposition at different
angles, ultraviolet-irradiation, and subsequent warm-up. Vacuum-ultraviolet
spectroscopy and a Ni-mesh measured the emission of the ultraviolet lamp.
Molecules ejected from the ice to the gas during irradiation or warm-up were
characterized by a quadrupole mass spectrometer. The photodesorption rate of CO
ice deposited at 11 K and different incident angles was rather stable between 0
and 45. A maximum in the CO photodesorption rate appeared around
70-incidence deposition angle. The same deposition angle leads to the
maximum surface area of water ice. Although this study of the surface area
could not be performed for CO ice, the similar angle dependence in the
photodesorption and the ice surface area suggests that they are closely
related. Further evidence for a dependence of CO ice morphology on deposition
angle is provided by thermal desorption of CO ice experiments
- …