8,816 research outputs found

    Astrophysical parameters and orbital solution of the peculiar X-ray transient IGR J00370+6122

    Get PDF
    BD+6073 is the optical counterpart of the X-ray source IGR J00370+6122, a probable accretion-powered X-ray pulsar. The X-ray light curve of this binary system shows clear periodicity at 15.7 d, which has been interpreted as repeated outbursts around the periastron of an eccentric orbit. We obtained high-resolution spectra of BD+6073 at different epochs. We used the FASTWind code to generate a stellar atmosphere model to fit the observed spectrum and obtain physical magnitudes. The synthetic spectrum was used as a template for cross-correlation with the observed spectra to measure radial velocities. The radial velocity curve provided an orbital solution for the system. We have also analysed the RXTE/ASM and Swift/BAT light curves to confirm the stability of the periodicity. BD +6073 is a BN0.7 Ib low-luminosity supergiant located at an approximate distance of 3.1 kpc, in the CasOB4 association. We derive Teff=24000 K and log gc=3.0, and chemical abundances consistent with a moderately high level of evolution. The spectroscopic and evolutionary masses are consistent at the 1 sigma level with a mass of 15 solar masses. The recurrence time of the X-ray flares is the orbital period of the system. The NS is in a high eccentricity (e=0.56) orbit, and the X-ray emission is strongly peaked around orbital phase 0.2, though the observations are consistent with some level of X-ray activity happening at all orbital phases. The X-ray behaviour of IGR J00370+6122 is reminiscent of intermediate SFXTs, though its peak luminosity is rather low. The orbit is somewhat wider than those of classical persistent supergiant X-ray binaries, which, combined with the low luminosity of the mass donor, explains the low X-ray luminosity. IGR J00370+6122 will likely evolve towards a persistent supergiant system, highlighting the evolutionary connection between different classes of wind-accreting X-ray sources.Comment: Accepted for publication in A&

    Nutritive Quality of Silages by Conventional Laboratory Methods and Near Infrared Reflectance Spectroscopy

    Get PDF
    Preservation of forages as silages is needed by dairy farmers in NW Spain to feed their cows during the dry (summer) and cold (winter) seasons. The objective of this work was to compare the prediction of in vivo digestibility values by conventional laboratory methods and by near infra-red reflectance spectroscopy (NIRS) for herbage and maize silages

    The evolution with temperature of magnetic polaron state in an antiferromagnetic chain with impurities

    Full text link
    The thermal behavior of a one-dimensional antiferromagnetic chain doped by donor impurities was analyzed. The ground state of such a chain corresponds to the formation of a set of ferromagnetically correlated regions localized near impurities (bound magnetic polarons). At finite temperatures, the magnetic structure of the chain was calculated simultaneously with the wave function of a conduction electron bound by an impurity. The calculations were performed using an approximate variational method and a Monte Carlo simulation. Both these methods give similar results. The analysis of the temperature dependence of correlation functions for neighboring local spins demonstrated that the ferromagnetic correlations inside a magnetic polaron remain significant even above the N\'eel temperature TNT_N implying rather high stability of the magnetic polaron state. In the case when the electron-impurity coupling energy VV is not too high (for VV lower that the electron hopping integral tt), the magnetic polaron could be depinned from impurity retaining its magnetic structure. Such a depinning occurs at temperatures of the order of TNT_N. At even higher temperatures (TtT \sim t) magnetic polarons disappear and the chain becomes completely disordered.Comment: 17 pages, 5 figures, RevTe

    Phase diagram as a function of temperature and magnetic field for magnetic semiconductors

    Full text link
    Using an extension of the Nagaev model of phase separation (E.L. Nagaev, and A.I. Podel'shchikov, Sov. Phys. JETP, 71 (1990) 1108), we calculate the phase diagram for degenerate antiferromagnetic semiconductors in the T-H plane for different current carrier densities. Both, wide-band semiconductors and 'double-exchange' materials, are investigated.Comment: 5 pages, 6 figures, RevTex, Accepted for publication in PR

    A heuristic block coordinate descent approach for controlled tabular adjustment

    Get PDF
    Abstract One of the main concerns of national statistical agencies (NSAs) is to publish tabular data. NSAs have to guarantee that no private information from specific respondents can be disclosed from the released tables. The purpose of the statistical disclosure control field is to avoid such a leak of private information. Most protection techniques for tabular data rely on the formulation of a large mathematical programming problem, whose solution is computationally expensive even for tables of moderate size. One of the emerging techniques in this field is controlled tabular adjustment (CTA). Although CTA is more efficient than other protection methods, the resulting mixed integer linear problems (MILP) are still challenging. In this work a heuristic approach based on block coordinate descent decomposition is designed and applied to large hierarchical and general CTA instances. This approach is compared with CPLEX, a stateof-the-art MILP solver. Our results, from both synthetic and real tables with up to 1,200,000 cells, 100,000 of them being sensitive (resulting in MILP instances of up to 2,400,000 continuous variables, 100,000 binary variables, and 475,000 constraints) show that the heuristic block coordinate descent has a better practical behaviour than a state-of-the-art solver: for large hierarchical instances it provides significantly better solutions within a specified realistic time limit, as required by NSAs in real-world

    IBSE: An OWL Interoperability Evaluation Infrastructure

    Get PDF
    The technology that supports the Semantic Web presents a great diversity and, whereas all the tools use different types of ontologies, not all of them share a common knowledge representation model, which may pose problems when they try to interoperate. The Knowledge Web European Network of Excellence is organizing a benchmarking of interoperability of ontology tools using OWL as interchange language with the goal of assessing and improving tool interoperability. This paper presents the development of IBSE, an evaluation infrastructure that allows executing automatically the benchmarking experiments and provides an easy way of analysing the results. Thus,including new tools into the evaluation infrastructure will be simple and straightforward

    Performance of MIMO systems in measured indoor channels with transmitter noise

    Get PDF
    This study analyzes the impact of transmitter noise on the performance of multiple-input multiple-output (MIMO) systems with linear and nonlinear receivers and precoders. We show that the performance of MIMO linear and decision-feedback receivers is not significantly influenced by the presence of transmitter noise, which does not hold true in the case of MIMO systems with precoding. Nevertheless, we also show that this degradation can be greatly alleviated when the transmitter noise is considered in the MIMO precoder design. A MIMO testbed developed at the University of A Coruña has been employed for experimentally evaluating how much the transmitter noise impacts the system performance. Both the transmitter noise and the receiver noise covariance matrices have been estimated from a set of 260 indoor MIMO channel realizations. The impact of transmitter noise has been assessed in this realistic scenario.Galicia. Consellería de Economía e Industria; 10TIC003CTGalicia. Consellería de Economía e Industria; 09TIC008105PRMinisterio de Ciencia e Innovación; TEC2010-19545-C04-01Ministerio de Ciencia e Innovación; CSD2008-0001
    corecore