A heuristic block coordinate descent approach
for controlled tabular adjustment

José A. Gonzalez, Jordi Castro
Dept. of Statistics and Operations Research
Universitat Politecnica de Catalunya
c. Jordi Girona 1-3, 08034 Barcelona, Catalonia
jose.a.gonzalez@Qupc.edu, jordi.castroQupc.edu

Research Report UPC-DEIO DR 2010-06
September 2010; updated February 2011

Report available from http://www-eio.upc.es/” jcastro

A heuristic block coordinate descent approach for
controlled tabular adjustment

José A. Gonzalez, Jordi Castro*
Dept. of Statistics and Operations Research
Universitat Politecnica de Catalunya
c. Jordi Girona 1-3, 08034 Barcelona, Catalonia, Spain
jose.a.gonzalez@upc.edu, jordi.castro@upc.edu

Abstract

One of the main concerns of national statistical agencies (NSAs) is to pub-
lish tabular data. NSAs have to guarantee that no private information from
specific respondents can be disclosed from the released tables. The purpose of
the statistical disclosure control field is to avoid such a leak of private informa-
tion. Most protection techniques for tabular data rely on the formulation of a
large mathematical programming problem, whose solution is computationally
expensive even for tables of moderate size. One of the emerging techniques in
this field is controlled tabular adjustment (CTA). Although CTA is more effi-
cient than other protection methods, the resulting mixed integer linear problems
(MILP) are still challenging. In this work a heuristic approach based on block
coordinate descent decomposition is designed and applied to large hierarchical
and general CTA instances. This approach is compared with CPLEX, a state-
of-the-art MILP solver. Our results, from both synthetic and real tables with up
to 1,200,000 cells, 100,000 of them being sensitive (resulting in MILP instances
of up to 2,400,000 continuous variables, 100,000 binary variables, and 475,000
constraints) show that the heuristic block coordinate descent has a better prac-
tical behaviour than a state-of-the-art solver: for large hierarchical instances it
provides significantly better solutions within a specified realistic time limit, as
required by NSAs in real-world.

Keywords: statistical confidentiality; statistical disclosure control; controlled tabu-
lar adjustment; mixed integer linear programming; heuristics; block coordinate de-
scent; decomposition techniques.

1 Introduction

National statistical agencies (NSAs) routinely disseminate both disaggregated (i.e.,
microdata or microfiles) and aggregated (i.e., tabular data) information. Tables are

*Corresponding author

T T9 1 T9

51-99 | ... | 380M€ | 3HME€ | .. 51-99 | ... |20 | 1or2
100-199 | ... | 700M€ | 800ME€ | ... 100-199 | ... | 30 35

(a) (b)

Figure 1: Example of disclosure in tabular data. (a) Net profit per number of employees

and region. (b) Number of companies per number of employees and region. If there is only

one company with 51-99 employees in region ro, then any attacker knows the net profit of

this company. For two companies, any of them can deduce the other’s net profit, becoming
an internal attacker.

generated by crossing two or more categorical variables of a particular microfile (i.e.,
a census), which results in sets of tables, usually with a large number of cells. NSAs
are obliged by law to guarantee that no particular information from any respondent
can be disclosed from the released information. The goal of the statistical disclosure
control field is to protect such sensitive information [18]. In this work we focus on
tabular data. Some of the state-of-the-art research in this field can be found in the
recent monographs [13, 14, 15, 17, 27].

Although cell tables show aggregated data for several respondents, there is a risk
of disclosing individual information. The example of Figure 1 shows a simple case.
The left table (a) reports the overall net profit of companies by number of employees
(row variable) and region (column variable), while table (b) provides the number of
companies. If there were only one company with 51-99 employees in region ry, then
any external attacker would know the net profit of this company. For two companies,
either one of them could disclose the other’s net profit, becoming an internal attacker.
Even if the number of companies in this cell was larger, but one of them could obtain
a good estimator of another’s net profit (for instance, by subtracting its own contri-
bution from the cell value), the cell would be considered unsafe. These unsafe cells
which require protection are named sensitive cells. Rules for detecting sensitive cells
are beyond the scope of this work (see, e.g., [16, 23] for a recent discussion).

There are several available techniques for the protection of tabular data. The most
widely used nonperturbative method (i.e., one which does not change cell values) is
named cell suppression problem (CSP) [5, 24]. CSP has been and is one of the
preferred options for NSAs. Recently, a new perturbative approach (i.e., cell values
are slightly adjusted or modified) named controlled tabular adjustment (CTA) was
introduced [4, 11]. Although it is a recent approach, CTA is gaining recognition
among NSAs. For instance, CTA appears in [23] among the list of currently available
techniques for tabular data, and it is considered as one of the emerging methods. In
addition, we recently developed in collaboration with the NSAs of Germany and the
Netherlands [21] a package for CTA in the scope of two projects funded by Eurostat,
the Statistical Office of the European Communities. The goal of those projects was the

Adjusted table, Adjusted table,

lower protection direction upper protection direction
1 T2 1 2
51-99 | ... | 385M€ | 30M€ | ... 51-99 | ... | 37TbM€ | 40M€
100-199 | ... | 695M€ | 805M<E | ... 100-199 | ... | 7T05M€ | 7T95M€

Figure 2: Protected (or adjusted) tables with “lower protection direction” and “upper pro-
tection direction” considering lower and upper protection levels of five (i.e., value of sensitive
cell is respectively reduced and increased by five units) for the original table of Figure 1.

safe dissemination of European business and animal production statistics by Eurostat,
and CTA was used within the overall protection scheme. CTA is thus a method of
actual practical relevance. It is worth noting that in recent specialized workshops
on statistical disclosure control, relevant members of NSAs stated that perturbative
methods, like CTA, are gaining acceptance [28], and some perturbative approaches
are being used for the protection of national census tables (e.g., for Germany [20]).

Figure 2 illustrates CTA on the small two-dimensional table of Figure 1, consider-
ing cell (51-99,r5) as the only sensitive cell, with lower and upper protection levels of
5. Note that protection levels are either directly obtained from the rules that provide
the set of sensitive cells, or just computed as a percentage of the cell value. Depending
on the “protection direction” of the sensitive cell, either “downward” or “upward”,
which has to be decided, the value to be published for this cell will be respectively
less or equal than the original cell value minus the lower protection level, or greater
or equal than the original cell value plus the upper protection level. In the example
of Figure 2, if the protection direction is “down”, then the value published for the
sensitive cell should be less or equal than 30; a possible adjusted table for this case is
shown in the left table of Figure 2. If the protection direction is “up”, then the value
must be greater or equal than 40, as shown in the right table of Figure 2. Note that
the remaining cells have to be adjusted to preserve the value of marginal cells. CTA
aims at finding the protection direction of each sensitive cell (binary decisions), and
the adjustments to be done to each cell (continuous variables), preserving the value
of total cells (or some subset of particular cells, possibly empty), and minimizing the
distance between the original and the released table.

Although CTA formulates mixed integer linear problems (MILPs) with a number
of variables and constraints that is linear in the size of the table —and thus its
solution can be attempted with generic state-of-the-art solvers—, real-world instances
are challenging and may require many hours of execution for an optimal solution (or
quasi optimal solution, e.g., with optimality gaps below 5%). In practice, however,
NSAs do not require such optimal solutions, and good, feasible approximate solutions
are enough. Indeed, a big effort to reach an optimal solution may not make sense, since
some of the parameters of the CTA model are estimated by NSAs (as, e.g., the amount

C; C C3
Ry| 5 | 11 | 10
Rp| 8| 3|14
Ryz| 7 | 10| 4
20 24 28

Ry[20 |24 28 —
R,| 38 | 38 | 40
Rg| 40 | 39 | 42 \Rgl 7 16|14
Ry 21| 11| 8
Ry 12| 12 | 20
0 39 2

Figure 3: Example of 1H2D table: the row factor in the left table splits into one subtable
per row (only two are shown). The number of rows may be different at each subtable, but
the number of columns are the same as in the parent table.

of protection to be provided to a certain table). Moreover, in practice tabular data
protection is the last stage of the data cycle, and, in an attempt to meet publication
deadlines, NSAs require methods that find fast solutions to protect large tables [10].
This work presents a heuristic procedure based on block coordinate descent (BCD)
[3, 9] for the solution of CTA formulated as a MILP. As it will be shown, given a
practical time limit (i.e., from some minutes to one hour), for some kinds of tables—
namely, hierarchical tables, discussed below, which are of great practical interest for
NSAs—, BCD consistently provided better solutions than a general state-of-the-art
solver, such as CPLEX. For general tables, although the benefits of BCD were not so
significant, it was also the most efficient approach for the largest, real-world, instances.

As far as we know, this is the first heuristic approach for real-world large CTA
instances. A previous work [22] applied some metaheuristics and learning heuristics
only to small tables (two-dimensional tables of up to 625 cells), while we consider more
complex hierarchical tables of about 1,200,000 cells (100,000 of them sensitive). We
also tried other general metaheuristics as genetic algorithms without success. Indeed,
combinations or slight modifications of solutions are not expected to satisfy the large
number of linear equations with no particular structure of CTA. Therefore, for the
purpose of guaranteeing this large number of linear constraints, any practical heuristic
should rely on MILP technology, as BCD does.

Briefly, BCD is a simple strategy that decomposes the problems in blocks (or
clusters) of variables, and sequentially solves the MILP subproblem for each block.
Therefore, in practice BCD behaves best when the MILP variables may be clustered,
and clusters are loosely coupled. For this reason in this work we mainly focus on
hierarchical tables. Hierarchical tables are obtained by crossing a number of categor-
ical variables, and some of them have a hierarchical structure, i.e., some tables are
subtables of other tables. Hierarchical tables are of very practical interest for NSAs.
The simplest hierarchical table is obtained by crossing two categorical variables, one
of them being hierarchical; this particular case is known as 1H2D tables. Figure 3
illustrates a small 1H2D table: rows R; and Rjs (related, e.g., to state level infor-
mation) are decomposed into two subtables (whose rows are, for example, related
to region level information); rows of these two subtables could be subsequently de-
composed (e.g., for city level information). 1H2D tables can be viewed as a tree of

subtables. Note, however, that BCD is not tailored to hierarchical tables. Indeed, in
this work it was also applied to general complex tables, though the most successful
results were obtained for hierarchical tables. This is partly explained by the inherent
block structure of hierarchical tables. Some attempts for extracting the block struc-
ture of general tables were made [6] but, in general, the resulting blocks were far too
coupled for complex instances. Note that, in practice, tables (either 1H2D or general)
are represented by a set of linear equations imposing each of them that the sum of
some set of cells equals a given marginal cell. This model will be used in the CTA
formulation of next section.

There are other approaches similar to BCD, namely fix-and-relax and branch-and-
fix, which have been used in other large MILPs arising, respectively, in scheduling
and stochastic programming problems [1, 12]. As BCD, fix-and-relax decomposes the
problem in k& blocks of binary variables. It iteratively optimizes for each block 7 of
binary variables, fixing the variables of blocks j < 4, and relaxing the variables of
blocks j > ¢, unlike BCD, which also fixes the variables of blocks j > i. Moreover,
fix-and-relax performs one single iteration, whereas BCD keeps on iterating while
the solution is improved. Branch-and-fix is a significantly different procedure, but it
has in common with the other approaches the idea of decomposing a large MILP in
smaller subproblems, optimizing —in a coordinated way— all of them by fixing some
common binary variables. Full details can be found in [1].

The structure of the paper is as follows. Section 2 outlines the general MILP
formulation of CTA. Section 3 introduces the BCD procedure for CTA, and describes
an approach based on the Boolean Satisfiability problem (SAT for short, hereafter)
for obtaining good initial feasible solutions. Section 4 provides some implementation
details and reports the computational results using a set of synthetic and real-world
tables.

2 Formulation of CTA as a MILP

Any instance of CTA, either with one table or a number of tables, can be represented
by the following elements:

e An array of cells a;,7 = 1,...,n, satisfying a set of m linear relations Aa = b,
a € R™ being the vector of a;’s, b € R™ the right-hand-side term of the linear
relations (usually b = 0), and A € R™*" the cell relations matrix. Note that
rows of A are made of 1’s, 0’s and a single —1 (associated to the marginal or
total cell value).

e A vector w € R™ of positive weights for the deviations of cell values, used in the
definition of the objective function.

e A lower and upper bound for each cell i« = 1,...,n, respectively l,, and uy,,
which are considered to be known by any data attacker. If no previous knowledge
is assumed for cell ¢ then I, = 0 (I, = —oo if @ > 0 is not required) and

Uy, = +00 can be used.

o Aset S = {i1,iz,...,is} C {1,...,n} of indices of s sensitive or confidential
cells.

e A lower and upper protection level for each confidential cell i € S, respectively
Ipl; and upl;, such that the released values z € R™ must satisfy either x; >
a; +upl; or x; < a; — Ipl;.

CTA attempts to find the closest safe values x, according to some distance L, that
makes the released table safe. This involves the solution of the following optimization
problem:

min |z —allL
x
subject to Az =0> (1)

x; <a; —lIpl; or x; > a; +upl; 1 €S.

Problem (1) can also be formulated in terms of deviations from the current cell values.
Defining
z=x—a, l,=1,—a, Uy = Uy — a, (2)

and using the L, distance weighted by w, (1) can be recast as:

min Z wi| 2]
i=1
subject to Az =0 (3)

l.<z<u,
zi < —Ipl; or z; > upl; €S,

z € R™ being the vector of deviations. Since w > 0, introducing variables 2T, 2~ € R"
so that z = 27 — 27, the absolute values may be written as |z| = z* +27. Considering
a vector of binary variables y € {0,1}° for the “or” constraints, problem (3) is finally
written as an MILP:

min wi(zF + 27 4a
Z+,z*,y ; (T 2) ()
subject to Azt —27)=0 (tb)
0<z"<u,, 0<z <-I, (40)
y € {0,1}° (1)

upl; y; <zh <wu,y ‘
Ipli(1—y) <z7 < —lzi(l—wy) }z €S (4e)

When y; = 1 the constraints mean upl; < zf < u,, and z; = 0, thus the protection
direction is “upward”; when y; = 0 we get zz+ = 0 and Ipl; < z; < —lI,,, thus the
protection direction is “downward”.

3 The heuristic block coordinate descent approach
for CTA

Block coordinate descent (BCD) solves a sequence of subproblems, each of them opti-
mizing the objective function over a subset of variables while the remaining variables
are kept fixed. This is iteratively repeated until no improvement in the objective
function is achieved, e.g., the difference between some (for instance, two) consecutive
objective functions is less than a specified optimality tolerance. Convergence of this
algorithm is only guaranteed for convex problems where each optimization subprob-
lem has a unique optimizer [3, Prop. 2.7.1] (note that strict convexity satisfies this
requirement). Although MILP problems are not convex, and thus they do not guar-
antee convergence, BCD usually behaves properly in practical complex applications
[9, 26], and it can be used as a heuristic approach.

For the particular case of CTA, if the number of sensitive cells s is very large,
optimal solutions may require computationally prohibitive executions. BCD may
provide good approximate solutions by optimizing at each iteration the protection
direction (either “downward” or “upward”) of a subset of sensitive cells, and the
deviations for all the cells. The protection directions of the remaining sensitive cells
are kept constant at the optimal values of previous iterations. Note that continuous
variables of the problem (the deviations for all the cells) are never fixed; blocking
and fixing is only performed for the binary variables, which is a significant difference
with the standard BCD method. Partitioning the binary variables y of (4a)—(4e) into
k blocks, and denoting 37" as the fixed values of block j at inner iteration 4, the
algorithm is roughly as follows:

Step 0 Initialization. Set outer iteration counter: ¢ = 0. Set initial values, hopefully
feasible, to y.

Step 1 ¢t =t -+ 1. Set inner iteration counter ¢ = 0.
Divide y into k blocks: y = {y"?,..., 4"}, not necessarily of the same size.

Step 1.1 i := i + 1. Solve (4a)—(4e) with respect to block y*!, taking into
account that 7+ is fixed for j # i.
Let i1 = (y»%)* (the point at the optimum). Let y/**1 = ¢3¢ for j # i.

Step 1.2 If ¢ < k go to Step 1.1.

Step 2 Check for end conditions: if apply, stop, and return the current best solution.
Otherwise, go to Step 1

Note that the original problem (4a)—(4e) is solved if only one block of variables is
considered. Therefore, although BCD is a heuristic approach for MILP problems, it is
easily switched to an optimal approach by setting k = 1 at Step 1 for some advanced
t. The subproblems of Step 1.1 may be solved by any MILP method; we used the
branch-and-cut solver of CPLEX.

Different strategies can be considered for the division of variables y between con-
secutive major iterations, e.g., reversing the order of blocks, changing the blocks, etc.

Figure 4: Example of the tree structure of a 1H2D table, variables being partitioned by

levels. Boxes refer to the set of sensitive variables in a subtable. Groups of boxes closed by

dashed or dotted lines form a block of variables to be optimized together in the first major
iteration.

Using a true partition of the sensitive cells means that each cell has just one chance
of being “upper” or “lower” protected at each major iteration. However, this is not
strictly needed, and in practice some sensitive cells could belong to more than one
block. In this case the decision variables associated to these cells would be determined
more than once for some t.

Two strategies have been tested, which can be viewed as a framework whose
implementation would admit further possibilities. The first strategy (named random-
BCD) divides S randomly into a number of blocks, keeping their sizes as similar as
possible. The partition is obtained by shuffling the variables such that different blocks
are considered at major iterations.

The second strategy (that will be referred to as tree-BCD) is tailored for 1H2D
hierarchical tables, exploiting the tree structure of these kinds of tables. In the first
major iteration, the sensitive cells are partitioned according to their level: the first
block is composed of all the variables of cells in the main table (level 1, or table 0, as
seen in Figure 4); then, the second block takes the variables in the next level (0.1, 0.2,
and so on); the third block considers all the variables in level 3 (0.1.1, 0.1.2, etc), and
so forth until the deepest level. Once the first major iteration is finished, the second
one builds overlapping blocks of cells: the first block now includes level 1 and level 2;
the second one, level 2 and level 3, etc. A third major iteration makes blocks from
three consecutive levels. The last major iteration would include all the levels in one
block, as a pure CTA problem; if the time limit has not been reached yet, it could
benefit from a warm-start from previous solutions.

The previous breadth-first strategy was compared with a depth-first strategy, also
implemented. In the latter, blocks were formed with all the subtables from the root to
a leaf, taking only one subtable per level. Note that the derived blocks are significantly
overlapped. This strategy was not satisfactory, and their results are not reported in
the computational results of Section 4.

One of the main drawbacks of BCD is that dual information for the whole (4a)—(4e)
problem is not obtained, and thus the stopping rule only focuses on improvements
between consecutive iterations. Note, however, that CTA is a minimum distance
problem (1) and that zero is a readily available lower bound. Another main drawback
of BCD is that it may not be able to obtain a feasible solution, unless an initial set

of feasible either “up” or “down” protection directions for y are set at Step 0. For
complex and large instances, looking for an initial feasible pattern of protection direc-
tions for y is a hard problem (theoretically, as hard as finding the optimal solution).
The next subsection describes a heuristic strategy that in practice was very useful.
Indeed, as it will be noted in the computational results of Section 4, this heuristic
for CTA instances provided better initial solutions than the several strategies tested
with CPLEX.

3.1 Finding a feasible starting point. The SAT method

There are several general approaches for finding an initial point in MILP problems
(e.g., variable and node selection, feasibility pump, etc.). Many of them can be found
in [8], and are implemented in state-of-the-art solvers. An obvious approach for
starting BCD with a feasible point would be to run any of those solvers until the first
feasible solution for constraints (4b)—(4e) is found. However, this approach would not
exploit the particular structure of CTA. To avoid this lack of exploitation, a particular
strategy was developed, which has proven to be successful in most instances. Briefly,
this approach consists of two phases: first, the set of constraints Az = 0 is scanned to
locate those involving sensitive cells, and each constraint of this subset is analyzed to
identify possible infeasible combinations for protection directions y of sensitive cells;
and second, all the forbidden combinations are compiled together, and an assignment
is sought so that none of these combinations is present. For example, assuming cell
values are nonnegative, if one of the original table relations is

1o + 34 + 45 + 127 = 20,9,

where the subindex denotes the cell index, and the lower and upper protection levels
of sensitive cells 4 and 7 are respectively Iply = uply = 2 and Ipl; = upl; = 4, then
ys = y7 = 1 (i.e., protection direction for sensitive cells 4 and 7 is “up”) is a forbidden
solution. Indeed, note that in the protected table this relation would then be

$2+5+$5+16:20,

which is infeasible since (z2,25) > 0. The above two phases are outlined below.

The first phase exploits the particular structure of the table relations. Since a table
can be described through linear combinations of the cell contents, after rearranging
terms, constraint j of Az = 0 of (3) can be recast as

Z mijzi = Z —mijzi, (5)

icl; i€l

where I; C S and 1 J’ C S are respectively the sets of sensitive and nonsensitive cells in
constraint j, and coefficients m;; are elements of the matrix A, either 1 or —1. Next,
lower bounds are computed for each side of (5). The right-hand side is not depending

on y, and therefore bounds are

Z —mij (g, — ai) + Z mij(a; — ly,;)

1‘61§: ie[}:
mij>0 m’ij<0

< Z —Mmjzi < (6)

iel;

Y omigai— L)+ Y —mij(ug, — a;).
ieI;: iel_;:
mi;>0 m; ;<0

For some assignment of y, the bounds of the left-hand side are

Z —mij(a; — le,) + Z —mi;lpl; + Z mijupl; + Z mi; (g, — a;)

i€ljiy; =0, i€1;:y;=0, i€y =1, i€y =1,
m;;>0 m;; <0 m;;>0 m;;<0
< E mijz; <

il

Z —mijlpl,' + Z —My; (ai — lacl) + Z My 5 (Uum — ai) + Z mijupli.

i€ljiy; =0, i€lj:y; =0, €1y =1, i€lj:y;=1,
™My g >0 mij<0 m,i]»>0 ™My <0

(7)
The procedure consists of searching for any y so that the bounds of both sides mis-
match (i.e., either the lower bound of the left-hand side is greater than the upper
bound of the right-hand side, or the upper bound of the left-hand side is less than
the lower bound of the right-hand side).

Provided that the number of sensitive variables at each constraint, |[;|, is small
(say, less than 20), exhaustive search could be used to find every infeasible combina-
tion. However, the cost is prohibitive even for moderate |I;|, so we have developed a
simple but very efficient method to detect the infeasible combinations in a constraint.
At first, the procedure determines which combination of y is giving the highest value
of the lower bound of (7). If this value is greater than the upper bound of (6), one
infeasible combination has been found, and others may be around. Therefore, starting
from the first one, we go through each combination that arises by changing only one
direction and that it has not been visited before. The combination is pruned, and
hence discarded, if the resulting lower bound of (7) falls below the upper bound of (6);
otherwise it is included in a list of combinations to be explored, until all of them have
been pruned. The same process is repeated for combinations under the lower bound
of (6). Usually only a few combinations appear at each constraint, so the search is
very efficient, whatever the number of sensitive cells in it.

In the second phase, all the infeasible combinations for y detected in the first
phase are collected, and a solution that avoids all of them is looked for. Note that
avoiding all these infeasible combinations is a necessary but not a sufficient condition
for an initial feasible point. However, in practice, the resulting solution was generally

10

feasible. This problem is known as the Boolean Satisfiability (SAT), and it consists of
determining a satisfying variable assignment for a Boolean function, or determining
that no such assignment exists. The subject of practical SAT solvers has received
considerable research attention, with many algorithms proposed and implemented,
e.g. GRASP [25] and SATO [29]. The solver used in this work was MiniSAT [19], an
open-source implementation of SAT techniques.

In general, a solver operates on problems specified in conjunctive normal form.
This form consists of the logical “and” of one or more clauses (related to one infeasible
combination), which themselves consist of the logical “or” of one or more literals
(related to y variables). For instance, suppose that three combinations have been
detected as infeasible:

(1) yi=Ly=0y3=1Lya=1 =y A= Y2 Ays A
(2) y3=Lya=1l,ya=1 = Y3 Ny2 AN ya
(3) ys = 1,y2 =0,y1 =1 = ys A2 Ay1.

None of these combinations is desired, so we seek for an assignment of y in such a way
that all of them are false. Equivalently, we can negate them to find an assignment
satisfying (as true) all clauses:

(1 Vy2 Vs Voya) A(—ys V —ya V oya) A (2ys Ve Vo).

This expression can be satisfied with (—y; A —ys), or numerically y; = 0 and y3 = 0.
This condition is sufficient for the SAT problem, so the other variables can take any
value.

Once a solution of the corresponding SAT problem is available, the problem (4a)-
(4e), with y fixed, can be checked to determine if there exists a feasible solution for
zT and 2~ . Though the assignment obtained by y does not guarantee the feasibility
of the constraints without sensitive variables, it was usually found that SAT returned
a feasible point, so that BCD was ready to start. In those few cases where the SAT
assignment failed, other starting y values were found by a MILP solver, stopping at
the first feasible point. The unsuccessful SAT values of y were used as a warm-start
for the MILP solver.

4 Computational results

4.1 Implementation

The BCD approach, including the SAT heuristic for the binary initial point, was
implemented in C4++. The code allows the user to switch between random-BCD,
tree-BCD (only breadth-first strategy, the most efficient option), and the solution
of CTA by branch-and-cut. Note that BCD subproblems are solved with this same
branch-and-cut for a fair comparison. The SAT heuristic may be activated to provide
an initial point for the branch-and-cut method as well, such that the benefits of either
the SAT heuristic, or the BCD approach, or both of them together, can be isolated.
The optimizer used was CPLEX version 11.

11

The BCD variants may be tuned with some parameters chosen by the user. The
most significant parameters are the total time limit (also applicable to the branch-
and-cut option); the time limit for each subproblem; the optimality gap for each
subproblem; and the number of blocks (subproblems) to be considered. Note that
a time limit is required by NSAs for data publication deadlines in the real-world.
The random-BCD variant is also affected by the randomness of the blocks selection.
After exploring the effect of these factors with several instances, it can be concluded
that BCD is barely sensitive both to random variability and the user adjustments of
parameters. No significant differences were found if the optimality gap of subproblems
is set to values between 1% to 10% (with smaller gaps, subproblems may achieve better
solutions, but they take more time, so fewer subproblems can be solved due to the
overall time limit). For the total time limit, the larger it is, the better the solution
found; for the subproblem time limit, it should be large enough to improve the initial
provided solution, but not too large to avoid that most of the total time is spent on
too few subproblems.

With regard to the number of blocks in the random strategy, it was observed that
it is inadvisable to take a large number, since each subproblem would consider too few
sensitive variables at once, which is unlikely to improve the previous solution. In our
tests, values from 2 to 40 blocks were chosen, noticing that low numbers (say, below
10) are preferable, with no significant differences between them. However, in general
it is recommended to take more than three or four blocks —or even more, depending
on the table size— since lower numbers lead to large subproblems that could take as
much time as the original problem.

4.2 Test instances

The BCD approach was tested using both 1H2D (hierarchical) and general complex
tables. Real-world tables are provided by NSAs as a set of equations, without pro-
viding information about the particular inherent structure (which is difficult to be
extracted by general procedures [6]). Hierarchical tables were thus obtained by a
generator of 1TH2D synthetic tables.

Some of the parameters of the generator controlling the dimensions of the table
are: mean number of rows in a table; number of columns per subtable; depth of
hierarchical tree; minimum and maximum number of rows with hierarchies for each
table; and probability for a cell to be marked as sensitive. The random generator is
available from http://www-eio.upc.es/~jcastro/generators_csp.html. A set of
24 representative and large 1H2D tables was generated. Their main dimensions are
reported in Table 1. Columns n, s, m and “N. coef.” show, respectively, the number
of cells, sensitive cells, table linear relations (i.e., rows of matrix A), and nonzero
coefficients of matrix A. Columns “cont.”, “bin.” and “constr.” show the number of
continuous variables, binary variables, and constraints of the resulting MILP problem
(4a)—(4e). The generator parameters were set such that tables 31 to 38 are large, 21
to 28 are medium-size tables, and 11 to 18 are the smaller ones. The depth of the
hierarchical tree of each instance is six, but tables 16 and 17 (depth is five) and table
18 (depth is four).

For the general tables, whose dimensions are also reported in Table 1, we consid-

12

http://www-eio.upc.es/~jcastro/generators_csp.html

Table 1: Characteristics of instances

instance n s m N. coef. cont. bin. constr.
table 11 20280 973 1560 41314 40560 973 5452
table 12 21476 2062 1684 43784 42952 2062 9932
table 13 36806 3345 5832 76087 73612 3345 19212
table 14 5388 224 1474 11346 10776 224 2370
table 15 26884 2443 3368 54681 53768 2443 13140
table 16 52063 4732 6900 106282 104126 4732 25828
table 17 16852 1531 2390 34551 33704 1531 8514
table 18 8316 755 1339 17204 16632 755 4359
table 21 126362 12324 5501 255102 252724 12324 54797
table 22 43365 4128 3577 88221 86730 4128 20089
table 23 71640 10442 3430 144684 143280 10442 45198
table 24 166248 12927 7966 335808 332496 12927 59674
table 25 55620 4323 2877 112536 111240 4323 20169
table 26 209456 16110 12164 422994 418912 16110 76604
table 27 65241 4744 7240 131780 130482 4744 26216
table 28 88164 6854 4321 178164 176328 6854 31737
table 31 155841 14744 6876 314716 311682 14744 65852
table 32 443169 44096 18230 893718 886338 44096 194614
table 33 116841 14083 4586 235926 233682 14083 60918
table 34 180999 26432 6456 364854 361998 26432 112184
table 35 499298 55527 20747 1007124 998596 55527 242855
table 36 1200439 107743 45638 2417196 2400878 107743 476610
table 37 296004 42652 10904 597057 592008 42652 181512
table 38 572373 81359 18873 1152345 1144746 81359 344309
hier13x13x13d 2197 108 3549 11661 4394 108 3981
hierl6 3564 224 5484 19996 7128 224 6380
ninenew 6546 858 7340 32920 13092 858 10772
ninel2 10399 1178 11362 52624 20798 1178 16074

13

ered four complex instances of CSPLIB (a library of tabular data protection instances,
available from http://webpages.ull.es/users/casc/#CSPlib:).

4.3 Results

Both BCD variants, random-BCD and tree-BCD, and the state-of-the-art branch-
and-cut of CPLEX were compared using the previous set of instances. For the 1TH2D
tables, the sequence of feasible solutions obtained for each method was recorded, until
the time limit was reached. Our goal was to show that, in the case of early interruption
of the optimization process, the quality of the best solution reached using BCD was
similar or better than the best solution provided by CPLEX branch-and-cut. All the
executions were carried out on a Linux Dell PowerEdge 6950 server with four dual
core AMD Opteron 8222 3.0 GHZ processors (without exploitation of parallelism
capabilities) and 64 GB of RAM.

Figures 5 and 6 show the evolution of the feasible solutions obtained for, respec-
tively, the medium-size and the large instances. Results for smallest tables, not shown,
revealed a similar pattern, though the differences between the methods were less sig-
nificant. In those figures, lines “BCD” refer to random-BCD, “B&C” to standard
branch-and-cut solutions and “SAT B&C” to branch-and-cut started with SAT solu-
tion. This latter option allows to compare BCD and branch-and-cut from the same
starting point. For these test tables the SAT technique returned feasible points in
all cases, and they were of better quality than the first feasible points provided by
CPLEX, which were usually of very poor quality.

Five blocks of cells were considered for the instances 11 to 18 with random-BCD,
while ten blocks were used for instances 21 to 28, and 31 to 38. For the instances of
Figures 5 and 6, the total time limit was set to three hours. For both BCD variants,
the subproblem time limit was one hour. In all cases —but for the table 14— branch-
and-cut exhausted the time limit without reaching an optimality gap of 5% (table 14
took less than 15 minutes to be solved, but it is significantly smaller than the rest). In
some cases the total running time was somewhat larger than three hours, as some BCD
subproblems exhausted the subproblem time limit, thus exceeding the total time. This
may happen sometimes with random-BCD (as in table 38), but is more usual with
tree-BCD because it solves a short sequence of subproblems with increasing difficulty.
In the first major iterations an optimal solution to the subproblems may quickly be
found; in the last major iterations, the subproblems may take a considerable amount
of time. On the other hand, random-BCD usually consists of a longer sequence of
subproblems, which are usually solved faster, though new solutions do not always
improve on the previous one.

With regard to the smallest instances 11 to 18, the objective function reaches an
almost steady state relatively soon, where BCD variants were faster in achieving an
acceptable solution. Only table 14 could be solved by the branch-and-cut method
within an optimality tolerance of 5%, and table 18 finished with a gap of just 5.20%.
Longer computation times were not of much help: for instance, tables 13 and 16 were
run with a time limit of two days of CPU time. The best objective function value for
table 13 was 453459, with an optimality gap of 45%; for table 16 the best objective
function value was 608223, with a gap of 55%. Although both solutions are slightly

14

http://webpages.ull.es/users/casc/#CSPlib:

case 21 case 22

1
750000
1

— BCD
X - =+ Tree BCO
1 - - - SAT B&C|
. B&C

1900000
1

650000
1

V<. .
~

~
- s it g e - e

1600000
1

550000
1

1300000
1
450000
1

T T T T T T
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 12000

case 23 case 24

1700000
1

1400000
1

1200000
1
1500000
1

1000000
1
1300000
1

0 2000 4000 6000 8000 10000 12000 0 2000 4000 6000 8000 10000

case 25 case 26

600000
1
1

2800000
1

500000
1

2400000
1

T T T T T T T
0 2000 4000 6000 8000 10000 12000 0 2000 4000 6000 8000 10000 12000

400000
2000000
1

case 27 case 28

1200000 1400000
1 1
950000
1 1

1000000
1
850000

800000
1
750000
1

T T T T T T T
0 2000 4000 6000 8000 10000 12000 0 2000 4000 6000 8000 10000 120

Figure 5: Sequences of feasible solutions for tables 21 to 28. The horizontal axis shows the

CPU time and the vertical axis the best objective function value achieved. The time limit

was three hours. The branch-and-cut solution for table 26 is not shown because the best
value of its objective function was 5.33 - 10°.

15

case 31 8 case 32
o
3] — BCD
T ©C | h e e - - - - - - - - - - - -+ Tree BCO
5] - - SATB&C
8 s B&C
(=]
o
N o .
i S \
o - .
o o
o N
(=3 ©
S
o
=}
3 4
o o
o o
o o
o - o -
§ T T T T T T § T T T T T T T T
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 12000 140(
case 33 case 34
i 8
o
o e]
8 &
8 - -
5 g
S
-~ o
o
@
o -
8 o
8] 8
3 8
@
. ~N
g g
S s 4
g S
8 T T T T T T g T T T T T T
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
case 35 case 36
- J
g g
o o
8 8
- ©
3
o | o .\
8 8 -
S S | N
@ =3 .
© 3 N
4 st N
4 N
o | o
g o g
o - ~ S
§ T T T T T T T Q T T T T T T T T
0 2000 4000 6000 8000 10000 12000 0 2000 4000 6000 8000 10000 12000 14000
g case 37 8 case 38
S S
=3 I
3 S | e e e e e e e e e = =
AR BTN
-~ o N ~ .
§ ~
° 4 .
g | 8 s
o
S 4
0 o
(=]
o
4 8
o
<
o o
o -
S o
2 g |
T T T T T T § T T T T T T T
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 12000

Figure 6: Sequences of feasible solutions for tables 31 to 38. The horizontal axis shows the

CPU time and the vertical axis the best objective function value achieved. The branch-and-

cut solution for all tables but numbers 31 and 33 are not shown because the best value of
their objective functions were about 1000 times the values presented here.

16

Table 2: Results for general tables

instance B&C BCD Time limit
hier13x13x13d 416604 477024 350 sec.
hier16 5.47-108 6.94-108 7200 sec.
ninenew 9.35-10% 5.90-108 7200 sec.
ninel2 1.41-10° 9.32-108 7200 sec.

better than those reached by BCD within two hours, the improvement in the objective
function is not worth the computational effort.

With larger instances, the advantage of BCD can even be emphasized with respect
to a standard branch-and-cut approach: the latter often gets stuck (at least, in the
three-hour time limit considered), whereas the objective of BCD sequences tends to
decrease. The branch-and-cut sequence for table 26 is not shown in Figure 5, since
the time limit was reached with a (bad) solution of objective equal to 5.33 - 10%. The
poor initial point obtained by the CPLEX strategy may be in the root of the weak
performance of the standard branch-and-cut: in Figure 6, only instances 31 and 33
obtain a solution in the same order of magnitude as that of BCD. The SAT proposal
is clearly superior in all cases, and it is seen that the evolution of BCD is better
than the sequence of branch-and-cut, which usually do not progress within the time
window considered.

It is also observed, for instances of any size, that random-BCD and tree-BCD are
very similar, the former being slightly better. This was not a priori expected, since
tree-BCD was supposed to take advantage of the tree structure of the tables.

Table 2 shows the results obtained for the four complex general tables of Table
1. Columns “B&C” and BCD report the objective function value reached within the
CPU time limit shown by column “Time limit” for, respectively, the CPLEX branch-
and-cut and random-BCD. From these results, it cannot be concluded that BCD
is always competitive for general complex tables against a state-of-the-art branch-
and-cut. This is partly explained by the complexity of the cell tables’ interrelations,
which result in highly coupled clusters of cells in the BCD approach. However, in the
significantly two largest instances (ninenew and ninel2) BCD returned a much better
solution within the time limit.

It is worth noting that above results were obtained with the default options of
CPLEX MILP solver, both for the standard branch-and-cut and the BCD approaches.
In order to test if the performance of CPLEX could be improved by tuning some its
MILP parameters, the group of largest tables was solved again with the following
changes: first, parameter MIP Emphasis set to “optimality” (i.e., emphasize optimal-
ity over feasibility); second, MIP Emphasis set to “bestbound” (i.e., greater emphasis
is set on optimality through moving the best bound); third, parameter FPHEUR
(feasibility pump [8]) activated. The random-BCD method was also executed with
both choices of the MIP Emphasis parameter. It can be concluded that the default
parameters used by CPLEX performed better, since worse objective functions were
achieved by the manual tuning. BCD always obtained better solutions than branch-
and-cut solution with the manual tuning, though not as good as those with the default

17

parameters. As for the feasibility pump heuristic, it did not outperform the automatic
CPLEX strategy for initial points (which may select feasibility pump, if necessary);
in any case, points obtained with either the automatic or feasibility pump procedures
were always poorer than those computed by the SAT approach.

5 Conclusions

From our actual experience with real-world instances, it can be stated that CTA
problems can be extremely difficult for large and complex tables, even for state-of-
the-art MILP solvers. The BCD approach presented and tested in this work was able
to obtain good solutions within two or three hours of the CPU time limit, for large
(up to 1,200,000 cells, 100,000 being sensitive) 1H2D tables. Moreover, the solution
obtained was comparable, and usually better than the incumbent provided by state-
of-the-art branch-and-cut solvers within the same time limit, even if the initial point
found by the SAT procedure is used as warm-start for the branch-and-cut solver.
Even tuning some MILP parameters in order to improve the CPLEX performance,
the BCD approach consistently returned the best solutions.

For general tables (with unknown internal structure), BCD did not outperform
branch-and-cut for all the tables tested, but it did for the largest ones. We are thus
optimistic about the possibilities of the method for even more difficult real-world
tables (with a higher number of cells and sensitive cells). This is partly supported by
the better observed behaviour of random-BCD against tree-BCD: random-BCD can
be immediately applied to more general (other than 1H2D) classes of tables, without
need to exploit the particular internal structure of the table relations.

The (increasing) ability of NSAs to create more complex and huge tables from
collected data is an incentive to develop powerful tools for CTA. Among them we find
Benders’ reformulation of CTA [2]; some preliminary testing with a prototype showed
the approach is efficient for two-dimensional tables [7], but deeper cuts are needed
for more complex tables. Other data protection approaches, like interval protection,
which results in a massive linear programming problem, and its efficient solution by
structured interior-point methods, are also among the remaining tasks to be addressed
in this challenging field.

6 Acknowledgments

The authors thank Daniel Baena (from the NSA of Catalonia) for generating the
tables used in the computational results. This work has been supported by grants
MTM2009-08747 of the Spanish Ministry of Science and Innovation, and SGR-~2009-
1122 of the Government of Catalonia.

References

[1] Alonso-Ayuso, A., Escudero, L.F.; and Ortuno, M.T. (2003), BFC, A branch-and-
fix coordination algorithmic framework for solving some types of stochastic pure

18

and mixed 0-1 programs, Furopean Journal of Operational Research, 151, 503-519.

[2] Benders, J.F. (2005) Partitioning procedures for solving mixed-variables program-
ming problems, Computational Management Science 2, 3-19. English translation
of the original paper appeared in Numerische Mathematik 4, (1962), 238-252.

[3] Bertsekas, D.P. (1999), Nonlinear Programming, 2nd ed., Athena Scientific, Bel-
mont.

[4] Castro, J. (2006), Minimum-distance controlled perturbation methods for large-
scale tabular data protection, Furopean Journal of Operational Research 171, 39—
52.

[5] Castro, J. (2007), A shortest paths heuristic for statistical disclosure control in
positive tables, INFORMS Journal on Computing 19, 520-533.

[6] Castro, J., and Baena, D. (2006), Automatic structure detection in constraints of
tabular data, Lecture Notes in Computer Science, 4302, 12—24.

[7] Castro, J., and Baena, D. (2008), Using a Mathematical Programming Modeling
Language for Optimal CTA, Lecture Notes in Computer Science, 5262, 1-12.

[8] Chinneck, J.W. (2008), Feasibility and Infeasibility in Optimization, Springer, New
York.

[9] Conejo, A.J., Castillo, E., Minguez, R., and Garcia-Bertrand, R. (2006), De-
composition Techniques in Mathematical Programming: Engineering and Science
Applications, Springer, Berlin.

[10] Dandekar, R.A. (2003) (Energy Information Administration, Department of En-
ergy, USA.) Personal communication.

[11] Dandekar, R.A., and Cox, L.H. (2002), Synthetic tabular data: an alterna-
tive to complementary cell suppression, manuscript, Energy Information Admin-
istration, U.S. Department of Energy. Available from the first author on request
(Ramesh.Dandekar@eia.doe.gov).

[12] Dillenberger, Ch., Escudero, L.F., Wollensak, A., and Zhang, W. (1994), On
practical resource allocation for production planning and scheduling with period
overlapping setups, Furopean Journal of Operational Research, 75, 275-286.

[13] Domingo-Ferrer, J., and Franconi, L.(eds.) (2006), Lecture Notes in Computer
Science. Privacy in Statistical Databases (Vol. 4302), Springer, Berlin.

[14] Domingo-Ferrer, J., and Magkos, E. (eds.) (2010), Lecture Notes in Computer
Science. Privacy in Statistical Databases (Vol. 6344), Springer, Berlin.

[15] Domingo-Ferrer, J., and Saigin, Y. (eds.) (2008), Lecture Notes in Computer
Science. Privacy in Statistical Databases (Vol. 5262), Springer, Berlin.

19

[16] Domingo-Ferrer, J., and Torra, V. (2002), A critique of the sensitivity rules usu-
ally employed for statistical table protection, International Journal of Uncertainty
Fuzziness and Knowledge-Based Systems, 10, 545-556.

[17] Domingo-Ferrer, J., and Torra, V. (eds.) (2004), Lecture Notes in Computer
Science. Privacy in Statistical Databases (Vol. 3050), Springer, Berlin.

[18] Domingo-Ferrer, J., and Torra, V. (2004), Disclosure risk assessment in statistical
data protection, Journal of Computational and Applied Mathematics 164—165, 285—
293.

[19] Eén, N., and Sorensson, N. (2003), An extensible sat-solver, in Proceedings of the
Sixth International Conference on Theory and Applications of Satisfiability Testing.

[20] Giessing, S., Hohne, J. (2010), Eliminating small cells from census counts tables:
some considerations on transition probabilities, Lecture Notes in Computer Science,
6344, 52-65.

[21] Giessing, S., Hundepool, A. and Castro, J. (2009), Rounding methods for pro-
tecting EU-aggregates. In Worksession on statistical data confidentiality. Eurostat
methodologies and working papers, Eurostat-Office for Official Publications of the
European Communities, Luxembourg, 255-264.

[22] Glover, F., Cox, L.H., Kelly, J.P., and Patil, R. (2008), Exact, heuristic and meta-
heuristic methods for confidentiality protection by controlled tabular adjustment,
International Journal of Operations Research 5, 117-128.

[23] Hundepool, A., Domingo-Ferrer, J., Franconi, L., Giessing, S., Lenz, R.,
Naylor, J., Schulte Nordholt E., Seri, G., De Wolf, P.-P. (2010), Handook on
Statistical Disclosure Control, Network of Excellence in the European Statis-
tical System in the field of Statistical Disclosure Control. Available online at
http://neon.vb.cbs.nl/casc/SDC_Handbook.pdf.

[24] Kelly, J.P., Golden, B.L, and Assad, A.A. (1992), Cell suppression: disclosure
protection for sensitive tabular data, Networks, 22, 28-55.

[25] Marques-Silva, J.P., and Sakallah, K.A. (1999), GRASP: A search algorithm for
propositional satisfiability, IEEE Transactions on Computers 48, 506—521.

[26] Plazas, M.A. (2006), Multistage stochastic model for bidding in electrical markets
(in Spanish), Ph.D. Thesis, Universidad de Castilla-La Mancha.

[27] Willenborg, L., and de Waal, T. (eds.) (2000) Lecture Notes in Statistics. Ele-
ments of Statistical Disclosure Control (Vol. 155), Springer, New York.

[28] Zayatz, L. (2009), U.S. Census Bureau, communication at Joint UN-
ECE/Eurostat Work Session on Statistical Data Confidentiality, Bilbao (Basque
Country, Spain).

[29] Zhang, H. (1997), SATO: An efficient propositional prover, in Proceedings of the
International Conference on Automated Deduction, 272-275, July 1997.

20

http://neon.vb.cbs.nl/casc/SDC_Handbook.pdf

	Introduction
	Formulation of CTA as a MILP
	The heuristic block coordinate descent approach for CTA
	Finding a feasible starting point. The SAT method

	Computational results
	Implementation
	Test instances
	Results

	Conclusions
	Acknowledgments

