503 research outputs found

    Young and middle age pulsar light-curve morphology: Comparison of Fermi observations with gamma-ray and radio emission geometries

    Full text link
    Thanks to the huge amount of gamma-ray pulsar photons collected by the Fermi Large Area Telescope since June 2008, it is now possible to constrain gamma-ray geometrical models by comparing simulated and observed light-curve morphological characteristics. We assumed vacuum-retarded dipole pulsar magnetic field and tested simulated and observed morphological light-curve characteristics in the framework of two pole emission geometries, Polar Cap (PC), radio, and Slot Gap (SG), and Outer Gap (OG)/One Pole Caustic (OPC) emission geometries. We compared simulated and observed/estimated light-curve morphological parameters as a function of observable and non-observable pulsar parameters. The PC model gives the poorest description of the LAT pulsar light-curve morphology. The OPC best explains both the observed gamma-ray peak multiplicity and shape classes. The OPC and SG models describe the observed gamma-ray peak-separation distribution for low- and high-peak separations, respectively. This suggests that the OPC geometry best explains the single-peak structure but does not manage to describe the widely separated peaks predicted in the framework of the SG model as the emission from the two magnetic hemispheres. The OPC radio-lag distribution shows higher agreement with observations suggesting that assuming polar radio emission, the gamma-ray emission regions are likely to be located in the outer magnetosphere. The larger agreement between simulated and LAT estimations in the framework of the OPC suggests that the OPC model best predicts the observed variety of profile shapes. The larger agreement between observations and the OPC model jointly with the need to explain the abundant 0.5 separated peaks with two-pole emission geometries, calls for thin OPC gaps to explain the single-peak geometry but highlights the need of two-pole caustic emission geometry to explain widely separated peaks.Comment: 28 pages, 20 figures, 8 tables; accepted for publication in Astronomy and Astrophysic

    Hard X-ray Quiescent Emission in Magnetars via Resonant Compton Upscattering

    Full text link
    Non-thermal quiescent X-ray emission extending between 10 keV and around 150 keV has been seen in about 10 magnetars by RXTE, INTEGRAL, Suzaku, NuSTAR and Fermi-GBM. For inner magnetospheric models of such hard X-ray signals, inverse Compton scattering is anticipated to be the most efficient process for generating the continuum radiation, because the scattering cross section is resonant at the cyclotron frequency. We present hard X-ray upscattering spectra for uncooled monoenergetic relativistic electrons injected in inner regions of pulsar magnetospheres. These model spectra are integrated over bundles of closed field lines and obtained for different observing perspectives. The spectral turnover energies are critically dependent on the observer viewing angles and electron Lorentz factor. We find that electrons with energies less than around 15 MeV will emit most of their radiation below 250 keV, consistent with the turnovers inferred in magnetar hard X-ray tails. Electrons of higher energy still emit most of the radiation below around 1 MeV, except for quasi-equatorial emission locales for select pulse phases. Our spectral computations use a new state-of-the-art, spin-dependent formalism for the QED Compton scattering cross section in strong magnetic fields.Comment: 5 pages, 2 figures, to appear in Proc. "Physics of Neutron Stars - 2017," Journal of Physics: Conference Series, eds. G. G. Pavlov, et al., held in Saint Petersburg, Russia, 10-14 July, 201

    Light-curve modelling constraints on the obliquities and aspect angles of the young Fermi pulsars

    Get PDF
    In more than four years of observation the Large Area Telescope on board the Fermi satellite has identified pulsed γ\gamma-ray emission from more than 80 young pulsars, providing light curves with high statistics. Fitting the observations with geometrical models can provide estimates of the magnetic obliquity α\alpha and aspect angle ζ\zeta, yielding estimates of the radiation beaming factor and luminosity. Using γ\gamma-ray emission geometries (Polar Cap, Slot Gap, Outer Gap, One Pole Caustic) and radio emission geometry, we fit γ\gamma-ray light curves for 76 young pulsars and we jointly fit their γ\gamma-ray plus radio light curves when possible. We find that a joint radio plus γ\gamma-ray fit strategy is important to obtain (α\alpha, ζ\zeta) estimates that can explain simultaneous radio and γ\gamma-ray emission. The intermediate-to-high altitude magnetosphere models, Slot Gap, Outer Gap, and One pole Caustic, are favoured in explaining the observations. We find no evolution of α\alpha on a time scale of a million years. For all emission geometries our derived γ\gamma-ray beaming factors are generally less than one and do not significantly evolve with the spin-down power. A more pronounced beaming factor vs. spin-down power correlation is observed for Slot Gap model and radio-quiet pulsars and for the Outer Gap model and radio-loud pulsars. For all models, the correlation between γ\gamma-ray luminosity and spin-down power is consistent with a square root dependence. The γ\gamma-ray luminosities obtained by using our beaming factors not exceed the spin-down power. This suggests that assuming a beaming factor of one for all objects, as done in other studies, likely overestimates the real values. The data show a relation between the pulsar spectral characteristics and the width of the accelerator gap that is consistent with the theoretical prediction for the Slot Gap model.Comment: 90 pages, 80 figures (63 in Appendices), accepted for publication in Astronomy and Astrophysic
    corecore