288 research outputs found
A framework to measure the properties of intergalactic metal systems with two-point flux statistics
The abundance, temperature, and clustering of metals in the intergalactic
medium are important parameters for understanding their cosmic evolution and
quantifying their impact on cosmological analysis with the Ly forest.
The properties of these systems are typically measured from individual quasar
spectra redward of the quasar's Ly emission line, yet that approach
may provide biased results due to selection effects. We present an alternative
approach to measure these properties in an unbiased manner with the two-point
statistics commonly employed to quantify large-scale structure. Our model
treats the observed flux of a large sample of quasar spectra as a continuous
field and describes the one-dimensional, two-point statistics of this field
with three parameters per ion: the abundance (column density distribution),
temperature (Doppler parameter) and clustering (cloud-cloud correlation
function). We demonstrate this approach on multiple ions (e.g., C IV, Si IV, Mg
II) with early data from the Dark Energy Spectroscopic Instrument (DESI) and
high-resolution spectra from the literature. Our initial results show some
evidence that the C IV abundance is higher than previous measurements and
evidence for abundance evolution over time. The first full year of DESI
observations will have over an order of magnitude more quasar spectra than this
study. In a future paper we will use those data to measure the growth of
clustering and its impact on the Ly forest, as well as test other DESI
analysis infrastructure such as the pipeline noise estimates and the resolution
matrix.Comment: 15 pages, 14 figure
Planting a Lyman alpha forest on AbacusSummit
The full-shape correlations of the Lyman alpha (Ly α) forest contain a wealth of cosmological information through the Alcock-Paczyński effect. However, these measurements are challenging to model without robustly testing and verifying the theoretical framework used for analysing them. Here, we leverage the accuracy and volume of the N-body simulation suite AbacusSummit to generate high-resolution Ly α skewers and quasi-stellar object (QSO) catalogues. One of the main goals of our mocks is to aid in the full-shape Ly α analysis planned by the Dark Energy Spectroscopic Instrument (DESI) team. We provide optical depth skewers for six of the fiducial cosmology base-resolution simulations (, N = 69123) at z = 2.5. We adopt a simple recipe based on the Fluctuating Gunn-Peterson Approximation (FGPA) for constructing these skewers from the matter density in an N-body simulation and calibrate it against the 1D and 3D Ly α power spectra extracted from the hydrodynamical simulation IllustrisTNG (TNG;, N = 25003). As an important application, we study the non-linear broadening of the baryon acoustic oscillation (BAO) peak and show the cross-correlation between DESI-like QSOs and our Ly α forest skewers. We find differences on small scales between the Kaiser approximation prediction and our mock measurements of the Ly α × QSO cross-correlation, which would be important to account for in upcoming analyses. The AbacusSummit Ly α forest mocks open up the possibility for improved modelling of cross-correlations between Ly α and cosmic microwave background (CMB) lensing and Ly α and QSOs, and for forecasts of the 3-point Ly α correlation function. Our catalogues and skewers are publicly available on Globus via the National Energy Research Scientific Computing Center (NERSC) (full link under the section 'Data Availability')
A dark siren measurement of the Hubble constant with the LIGO/Virgo gravitational wave event GW190412 and DESI galaxies
We present a measurement of the Hubble Constant using the gravitational
wave event GW190412, an asymmetric binary black hole merger detected by
LIGO/Virgo, as a dark standard siren. This event does not have an
electromagnetic counterpart, so we use the statistical standard siren method
and marginalize over potential host galaxies from the Dark Energy Spectroscopic
Instrument (DESI) survey. GW190412 is well-localized to 12 deg (90%
credible interval), so it is promising for a dark siren analysis. The dark
siren value for km/s/Mpc, with a posterior shape
that is consistent with redshift overdensities. When combined with the bright
standard siren measurement from GW170817 we recover
km/s/Mpc, consistent with both early and late-time Universe measurements of
. This work represents the first standard siren analysis performed with
DESI data, and includes the most complete spectroscopic sample used in a dark
siren analysis to date.Comment: Submitted to RNAA
A data compression and optimal galaxy weights scheme for Dark Energy Spectroscopic Instrument and weak lensing data sets
Combining different observational probes, such as galaxy clustering and weak lensing, is a promising technique for unveiling the physics of the Universe with upcoming dark energy experiments. The galaxy redshift sample from the Dark Energy Spectroscopic Instrument (DESI) will have a significant overlap with major ongoing imaging surveys specifically designed for weak lensing measurements: The Kilo-Degree Survey (KiDS), the Dark Energy Survey (DES), and the Hyper Suprime-Cam (HSC) survey. In this work, we analyse simulated redshift and lensing catalogues to establish a new strategy for combining high-quality cosmological imaging and spectroscopic data, in view of the first-year data assembly analysis of DESI. In a test case fitting for a reduced parameter set, we employ an optimal data compression scheme able to identify those aspects of the data that are most sensitive to cosmological information and amplify them with respect to other aspects of the data. We find this optimal compression approach is able to preserve all the information related to the growth of structures
A data compression and optimal galaxy weights scheme for Dark Energy Spectroscopic Instrument and weak lensing datasets
Combining different observational probes, such as galaxy clustering and weak
lensing, is a promising technique for unveiling the physics of the Universe
with upcoming dark energy experiments. The galaxy redshift sample from the Dark
Energy Spectroscopic Instrument (DESI) will have a significant overlap with
major ongoing imaging surveys specifically designed for weak lensing
measurements: the Kilo-Degree Survey (KiDS), the Dark Energy Survey (DES) and
the Hyper Suprime-Cam (HSC) survey. In this work we analyse simulated redshift
and lensing catalogues to establish a new strategy for combining high-quality
cosmological imaging and spectroscopic data, in view of the first-year data
assembly analysis of DESI. In a test case fitting for a reduced parameter set,
we employ an optimal data compression scheme able to identify those aspects of
the data that are most sensitive to the cosmological information, and amplify
them with respect to other aspects of the data. We find this optimal
compression approach is able to preserve all the information related to the
growth of structure; we also extend this scheme to derive weights to be applied
to individual galaxies, and show that these produce near-optimal results.Comment: 14 pages, 12 Figures, DESI collaboration articl
The DESI One-percent Survey: Evidence for Assembly Bias from Low-redshift Counts-in-cylinders Measurements
We explore the galaxy-halo connection information that is available in low-redshift samples from the early data release of the Dark Energy Spectroscopic Instrument (DESI). We model the halo occupation distribution (HOD) from z = 0.1 to 0.3 using Survey Validation 3 (SV3; a.k.a., the One-Percent Survey) data of the DESI Bright Galaxy Survey. In addition to more commonly used metrics, we incorporate counts-in-cylinders (CiC) measurements, which drastically tighten HOD constraints. Our analysis is aided by the Python package, galtab, which enables the rapid, precise prediction of CiC for any HOD model available in halotools. This methodology allows our Markov chains to converge with much fewer trial points, and enables even more drastic speedups due to its GPU portability. Our HOD fits constrain characteristic halo masses tightly and provide statistical evidence for assembly bias, especially at lower luminosity thresholds: the HOD of central galaxies in z ∼ 0.15 samples with limiting absolute magnitude M r < −20.0 and M r < −20.5 samples is positively correlated with halo concentration with a significance of 99.9% and 99.5%, respectively. Our models also favor positive central assembly bias for the brighter M r < −21.0 sample at z ∼ 0.25 (94.8% significance), but there is no significant evidence for assembly bias with the same luminosity threshold at z ∼ 0.15. We provide our constraints for each threshold sample’s characteristic halo masses, assembly bias, and other HOD parameters. These constraints are expected to be significantly tightened with future DESI data, which will span an area 100 times larger than that of SV3
PROVABGS: The Probabilistic Stellar Mass Function of the BGS One-percent Survey
We present the probabilistic stellar mass function (pSMF) of galaxies in the DESI Bright Galaxy Survey (BGS), observed during the One-percent Survey. The One-percent Survey was one of DESI’s survey validation programs conducted from 2021 April to May, before the start of the main survey. It used the same target selection and similar observing strategy as the main survey and successfully observed the spectra and redshifts of 143,017 galaxies in the r 100 × more galaxies. Moreover, we present the statistical framework for subsequent population statistics measurements using BGS, which will characterize the global galaxy population and scaling relations at low redshifts with unprecedented precision
Detecting and Characterizing Mg ii Absorption in DESI Survey Validation Quasar Spectra
We present findings of the detection of Magnesium II (Mg ii, λ = 2796, 2803 Å) absorbers from the early data release of the Dark Energy Spectroscopic Instrument (DESI). DESI is projected to obtain spectroscopy of approximately 3 million quasars (QSOs), of which over 99% are anticipated to be at redshifts greater than z > 0.3, such that DESI would be able to observe an associated or intervening Mg ii absorber illuminated by the background QSO. We have developed an autonomous supplementary spectral pipeline that detects these systems through an initial line-fitting process and then confirms the line properties using a Markov Chain Monte Carlo sampler. Based upon a visual inspection of the resulting systems, we estimate that this sample has a purity greater than 99%. We have also investigated the completeness of our sample in regard to both the signal-to-noise properties of the input spectra and the rest-frame equivalent width (W 0) of the absorber systems. From a parent catalog containing 83,207 quasars, we detect a total of 23,921 Mg ii absorption systems following a series of quality cuts. Extrapolating from this occurrence rate of 28.8% implies a catalog at the completion of the five-year DESI survey that will contain over eight hundred thousand Mg ii absorbers. The cataloging of these systems will enable significant further research because they carry information regarding circumgalactic medium environments, the distribution of intervening galaxies, and the growth of metallicity across the redshift range 0.3 ≤ z < 2.5
A Large Sample of Extremely Metal-poor Galaxies at z < 1 Identified from the DESI Early Data
Extremely metal-poor galaxies (XMPGs) at relatively low redshift are excellent laboratories for studying galaxy formation and evolution in the early universe. Much effort has been spent on identifying them from large-scale spectroscopic surveys or spectroscopic follow-up observations. Previous work has identified a few hundred XMPGs. In this work, we obtain a large sample of 223 XMPGs at z < 1 from the early data of the Dark Energy Spectroscopic Instrument (DESI). The oxygen abundance is determined using the direct T
e method based on the detection of the [O iii]λ4363 line. The sample includes 95 confirmed XMPGs based on the oxygen abundance uncertainty; the remaining 128 galaxies are regarded as XMPG candidates. These XMPGs are only 0.01% of the total DESI observed galaxies. Their coordinates and other properties are provided in the paper. The most XMPGs have an oxygen abundance of ∼1/34 Z
⊙, a stellar mass of about 1.5 × 107
M
⊙, and a star formation rate of 0.22 M
⊙ yr−1. The two most XMPGs present distinct morphologies suggesting different formation mechanisms. The local environmental investigation shows that XMPGs preferentially reside in relatively low-density regions. Many of them fall below the stellar mass–metallicity relations (MZRs) of normal star-forming galaxies. From a comparison of the MZR with theoretical simulations, it appears that XMPGs are good analogs to high-redshift star-forming galaxies. The nature of these XMPG populations will be further investigated in detail with larger and more complete samples from the ongoing DESI survey
Baryon Acoustic Oscillations in the Ly{\alpha} forest of BOSS DR11 quasars
We report a detection of the baryon acoustic oscillation (BAO) feature in the
flux-correlation function of the Ly{\alpha} forest of high-redshift quasars
with a statistical significance of five standard deviations. The study uses
137,562 quasars in the redshift range from the Data Release
11 (DR11) of the Baryon Oscillation Spectroscopic Survey (BOSS) of SDSS-III.
This sample contains three times the number of quasars used in previous
studies. The measured position of the BAO peak determines the angular distance,
and expansion rate, , both on a scale set by the sound
horizon at the drag epoch, . We find
and
where . The optimal
combination, is determined with a precision of
. For the value , consistent with the CMB power
spectrum measured by Planck, we find
and . Tests with mock
catalogs and variations of our analysis procedure have revealed no systematic
uncertainties comparable to our statistical errors. Our results agree with the
previously reported BAO measurement at the same redshift using the
quasar-Ly{\alpha} forest cross-correlation. The auto-correlation and
cross-correlation approaches are complementary because of the quite different
impact of redshift-space distortion on the two measurements. The combined
constraints from the two correlation functions imply values of and
that are, respectively, 7% low and 7% high compared to the
predictions of a flat CDM cosmological model with the best-fit Planck
parameters. With our estimated statistical errors, the significance of this
discrepancy is .Comment: Accepted for publication in A&A. 17 pages, 18 figure
- …