30 research outputs found

    Using polymorphisms in FKBP5 to define biologically distinct subtypes of posttraumatic stress disorder: Evidence from endocrine and gene expression studies

    Get PDF
    Context: Polymorphisms in the gene encoding the glucocorticoid receptor (GR) regulating co-chaperone FKBP5 have been shown to alter GR sensitivity and are associated with an increased risk to develop posttraumatic stress disorder (PTSD). Objective: To investigate interactions of the FKBP5 single-nucleotide polymorphism rs9296158 and PTSD symptoms on baseline cortisol level, low-dose dexamethasone suppression, and whole-blood gene expression. Design: Association of FKBP5 genotypes and PTSD symptoms with endocrine measures and genome-wide expression profiles. Setting: Waiting rooms of general medical and gynecological clinics of an urban hospital at Emory University. Participants: The 211 participants were primarily African American (90.05%) and of low socioeconomic status and had high rates of trauma and PTSD. Main Outcome Measures: Baseline and post-dexamethasone suppression cortisol measures and gene expression levels. Results: In our endocrine study, we found that only risk allele A carriers of rs9296158 showed GR supersensitivity with PTSD; in contrast, baseline cortisol levels were decreased in PTSD only in patients with the GG genotype. Expression of 183 transcripts was significantly correlated with PTSD symptoms after multiple testing corrections. When adding FKBP5 genotype and its interaction with PTSD symptoms, expression levels of an additional 32 genes were significantly regulated by the interaction term. Within these 32 genes, previously reported PTSD candidates were identified, including FKBP5 and the IL18 and STAT pathways. Significant overrepresentation of steroid hormone transcription factor binding sites within these 32 transcripts was observed, highlighting the fact that the earlier-described genotype and PTSDdependent differences in GR sensitivity could drive the observed gene expression pattern. Results were validated by reverse transcriptase-polymerase chain reaction and replicated in an independent sample (N=98). Conclusions: These data suggest that the inheritance of GR sensitivity-moderating FKBP5 polymorphisms can determine specific types of hypothalamic-pituitaryadrenal axis dysfunction within PTSD, which are also reflected in gene-expression changes of a subset of GRresponsive genes. Thus, these findings indicate that functional variants in FKBP5 are associated with biologically distinct subtypes of PTSD

    A hypomorphic vasopressin allele prevents anxiety-related behavior

    Get PDF
    In this study, microarray analysis, in situ hybridization, quantitative real-time PCR and immunohistochemistry revealed decreased expression of the vasopressin gene (Avp) in the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei of adult LAB mice compared to HAB, NAB (normal anxiety-related behavior) and HABxLAB F1 intercross controls, without detecting differences in receptor expression or density. By sequencing the regions 2.5 kbp up- and downstream of the Avp gene locus, we could identify several polymorphic loci, differing between the HAB and LAB lines. In the gene promoter, a deletion of twelve bp Δ(−2180–2191) is particularly likely to contribute to the reduced Avp expression detected in LAB animals under basal conditions. Indeed, allele-specific transcription analysis of F1 animals revealed a hypomorphic LAB-specific Avp allele with a reduced transcription rate by 75% compared to the HAB-specific allele, thus explaining line-specific Avp expression profiles and phenotypic features. Accordingly, intra-PVN Avp mRNA levels were found to correlate with anxiety-related and depression-like behaviors. In addition to this correlative evidence, a significant, though moderate, genotype/phenotype association was demonstrated in 258 male mice of a freely-segregating F2 panel, suggesting a causal contribution of the Avp promoter deletion to anxiety-related behavior

    A Hypomorphic Vasopressin Allele Prevents Anxiety-Related Behavior

    Get PDF
    To investigate neurobiological correlates of trait anxiety, CD1 mice were selectively bred for extremes in anxiety-related behavior, with high (HAB) and low (LAB) anxiety-related behavior mice additionally differing in behavioral tests reflecting depression-like behavior. promoter deletion to anxiety-related behavior. gene promoter explains gene expression differences in association with the observed phenotype, thus further strengthening the concept of the critical involvement of centrally released AVP in trait anxiety

    Atrial fibrillation genetic risk differentiates cardioembolic stroke from other stroke subtypes

    Get PDF
    AbstractObjectiveWe sought to assess whether genetic risk factors for atrial fibrillation can explain cardioembolic stroke risk.MethodsWe evaluated genetic correlations between a prior genetic study of AF and AF in the presence of cardioembolic stroke using genome-wide genotypes from the Stroke Genetics Network (N = 3,190 AF cases, 3,000 cardioembolic stroke cases, and 28,026 referents). We tested whether a previously-validated AF polygenic risk score (PRS) associated with cardioembolic and other stroke subtypes after accounting for AF clinical risk factors.ResultsWe observed strong correlation between previously reported genetic risk for AF, AF in the presence of stroke, and cardioembolic stroke (Pearson’s r=0.77 and 0.76, respectively, across SNPs with p &lt; 4.4 × 10−4 in the prior AF meta-analysis). An AF PRS, adjusted for clinical AF risk factors, was associated with cardioembolic stroke (odds ratio (OR) per standard deviation (sd) = 1.40, p = 1.45×10−48), explaining ∼20% of the heritable component of cardioembolic stroke risk. The AF PRS was also associated with stroke of undetermined cause (OR per sd = 1.07, p = 0.004), but no other primary stroke subtypes (all p &gt; 0.1).ConclusionsGenetic risk for AF is associated with cardioembolic stroke, independent of clinical risk factors. Studies are warranted to determine whether AF genetic risk can serve as a biomarker for strokes caused by AF.</jats:sec

    Inter-Chromosomal Contact Networks Provide Insights into Mammalian Chromatin Organization

    No full text
    Kaufmann S, Fuchs C, Gonik M, Khrameeva EE, Mironov AA, Frishman D. Inter-Chromosomal Contact Networks Provide Insights into Mammalian Chromatin Organization. PLOS ONE. 2015;10(5): e0126125.The recent advent of conformation capture techniques has provided unprecedented insights into the spatial organization of chromatin. We present a large-scale investigation of the inter-chromosomal segment and gene contact networks in embryonic stem cells of two mammalian organisms: humans and mice. Both interaction networks are characterized by a high degree of clustering of genome regions and the existence of hubs. Both genomes exhibit similar structural characteristics such as increased flexibility of certain Y chromosome regions and co-localization of centromere-proximal regions. Spatial proximity is correlated with the functional similarity of genes in both species. We also found a significant association between spatial proximity and the co-expression of genes in the human genome. The structural properties of chromatin are also species specific, including the presence of two highly interactive regions in mouse chromatin and an increased contact density on short, gene-rich human chromosomes, thereby indicating their central nuclear position. Trans-interacting segments are enriched in active marks in human and had no distinct feature profile in mouse. Thus, in contrast to interactions within individual chromosomes, the inter-chromosomal interactions in human and mouse embryonic stem cells do not appear to be conserved

    Impact of regional cortical and subcortical changes on processing speed in cerebral small vessel disease

    No full text
    Slowed processing speed is common in elderly subjects and frequently related to cerebral small vessel disease. Previous studies have demonstrated associations between processing speed and subcortical ischemic lesions as well as cortical alterations but the precise functional-anatomical relationships remain poorly understood. Here we assessed the impact of both cortical and subcortical changes on processing speed by measuring regional cortical thickness and regional lesion volumes within distinct white-matter tracts. To limit confounding effects from age-related pathologies we studied patients with CADASIL, a genetic small vessel disease. General linear model analysis revealed significant associations between cortical thickness in the medial frontal and occipitotemporal cortex and processing speed. Bayesian network analysis showed a robust conditional dependency between the volume of lacunar lesions in the left anterior thalamic radiation and cortical thickness of the left medial frontal cortex, and between thickness of the left medial frontal cortex and processing speed, whereas there was no direct dependency between lesion volumes in the left anterior thalamic radiation and processing speed. Our results suggest that the medial frontal cortex has an intermediate position between lacunar lesions in the anterior thalamic radiation and deficits in processing speed. In contrast, we did not observe such a relationship for the occipito-temporal region. These findings reinforce the key role of frontal-subcortical circuits in cognitive impairment resulting from cerebral small vessel disease

    Circos visualization of the human segment interaction network with a q-value cutoff of 1e-3.

    No full text
    <p> The majority of the contacts are formed between short chromosomes or from short chromosomes to others. Red bands mark centromeres.</p

    Correlation between the mean co-expression measure in the human genome and the mean spatial proximity value of 30 intervals.

    No full text
    <p>This is high and statistically significant compared with randomized binned data (<i>p</i>-value < 0.01). Co-expression was determined on the basis of the embryonic stem cell data set of Liu et al. (23) and the data were binned to reduce the effect of noise.</p
    corecore